Spaces:
Runtime error
Runtime error
upgrade
Browse files
app.py
CHANGED
@@ -54,9 +54,7 @@ if not os.path.exists(dataset_path):
|
|
54 |
# --- Load the dataset using pandas ---
|
55 |
print("π₯ Loading dataset using pandas...")
|
56 |
df = pd.read_json(dataset_path, lines=True)
|
57 |
-
#
|
58 |
-
df["lore"] = df["lore"].astype(str)
|
59 |
-
df["tweet"] = df["tweet"].astype(str)
|
60 |
dataset = Dataset.from_pandas(df)
|
61 |
print("Dataset columns:", dataset.column_names)
|
62 |
|
@@ -82,11 +80,11 @@ torch.cuda.empty_cache()
|
|
82 |
model.gradient_checkpointing_enable()
|
83 |
|
84 |
# --- Integrate PEFT (LoRA) ---
|
85 |
-
#
|
86 |
lora_config = LoraConfig(
|
87 |
r=16,
|
88 |
lora_alpha=32,
|
89 |
-
target_modules=["qkv_proj"],
|
90 |
lora_dropout=0.1,
|
91 |
bias="none"
|
92 |
)
|
@@ -95,11 +93,15 @@ model.print_trainable_parameters()
|
|
95 |
|
96 |
# --- Preprocess the dataset ---
|
97 |
def preprocess_function(examples):
|
|
|
|
|
98 |
tweets = examples.get("tweet", [])
|
99 |
lores = examples.get("lore", [])
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
103 |
combined_texts.append(combined_text)
|
104 |
return tokenizer(combined_texts, truncation=True, padding=True)
|
105 |
|
@@ -120,7 +122,7 @@ tokenized_eval = eval_dataset.map(add_labels, batched=True)
|
|
120 |
# --- Set training arguments ---
|
121 |
training_args = TrainingArguments(
|
122 |
output_dir=output_dir,
|
123 |
-
evaluation_strategy="epoch",
|
124 |
logging_dir="./logs",
|
125 |
logging_steps=500,
|
126 |
num_train_epochs=3,
|
|
|
54 |
# --- Load the dataset using pandas ---
|
55 |
print("π₯ Loading dataset using pandas...")
|
56 |
df = pd.read_json(dataset_path, lines=True)
|
57 |
+
# (Do not convert to string so that the dicts remain intact)
|
|
|
|
|
58 |
dataset = Dataset.from_pandas(df)
|
59 |
print("Dataset columns:", dataset.column_names)
|
60 |
|
|
|
80 |
model.gradient_checkpointing_enable()
|
81 |
|
82 |
# --- Integrate PEFT (LoRA) ---
|
83 |
+
# Based on your inspection, we now target "qkv_proj". Adjust if needed.
|
84 |
lora_config = LoraConfig(
|
85 |
r=16,
|
86 |
lora_alpha=32,
|
87 |
+
target_modules=["qkv_proj"],
|
88 |
lora_dropout=0.1,
|
89 |
bias="none"
|
90 |
)
|
|
|
93 |
|
94 |
# --- Preprocess the dataset ---
|
95 |
def preprocess_function(examples):
|
96 |
+
combined_texts = []
|
97 |
+
# For each example, extract the tweet content and lore response
|
98 |
tweets = examples.get("tweet", [])
|
99 |
lores = examples.get("lore", [])
|
100 |
+
for tweet_obj, lore_obj in zip(tweets, lores):
|
101 |
+
# Extract "content" from tweet, and "response" from lore
|
102 |
+
tweet_text = tweet_obj.get("content", "") if isinstance(tweet_obj, dict) else str(tweet_obj)
|
103 |
+
lore_text = lore_obj.get("response", "") if isinstance(lore_obj, dict) else str(lore_obj)
|
104 |
+
combined_text = "[PERSONALITY] " + tweet_text + "\n[KNOWLEDGE] " + lore_text
|
105 |
combined_texts.append(combined_text)
|
106 |
return tokenizer(combined_texts, truncation=True, padding=True)
|
107 |
|
|
|
122 |
# --- Set training arguments ---
|
123 |
training_args = TrainingArguments(
|
124 |
output_dir=output_dir,
|
125 |
+
evaluation_strategy="epoch", # (Deprecated: use eval_strategy in future versions)
|
126 |
logging_dir="./logs",
|
127 |
logging_steps=500,
|
128 |
num_train_epochs=3,
|