Spaces:
Runtime error
Runtime error
upgrade
Browse files
app.py
CHANGED
@@ -54,13 +54,18 @@ if not os.path.exists(dataset_path):
|
|
54 |
# --- Load the dataset using pandas ---
|
55 |
print("π₯ Loading dataset using pandas...")
|
56 |
df = pd.read_json(dataset_path, lines=True)
|
57 |
-
|
|
|
58 |
df["tweet_text"] = df["tweet"].apply(lambda x: x.get("content", "") if isinstance(x, dict) else str(x))
|
59 |
df["lore_text"] = df["lore"].apply(lambda x: x.get("response", "") if isinstance(x, dict) else str(x))
|
60 |
-
|
61 |
-
#
|
|
|
|
|
|
|
62 |
dataset = Dataset.from_pandas(df)
|
63 |
print("Dataset columns:", dataset.column_names)
|
|
|
64 |
|
65 |
# --- Split the dataset into train and evaluation subsets ---
|
66 |
split_dataset = dataset.train_test_split(test_size=0.1, seed=42)
|
@@ -76,7 +81,7 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
76 |
trust_remote_code=True,
|
77 |
device_map="auto",
|
78 |
max_memory=max_memory,
|
79 |
-
offload_folder=
|
80 |
low_cpu_mem_usage=True,
|
81 |
offload_state_dict=True
|
82 |
)
|
@@ -84,7 +89,7 @@ torch.cuda.empty_cache()
|
|
84 |
model.gradient_checkpointing_enable()
|
85 |
|
86 |
# --- Integrate PEFT (LoRA) ---
|
87 |
-
# Based on your inspection, we target "qkv_proj"
|
88 |
lora_config = LoraConfig(
|
89 |
r=16,
|
90 |
lora_alpha=32,
|
@@ -98,7 +103,7 @@ model.print_trainable_parameters()
|
|
98 |
# --- Preprocess the dataset ---
|
99 |
def preprocess_function(examples):
|
100 |
combined_texts = []
|
101 |
-
# Use the new flattened columns "tweet_text" and "lore_text"
|
102 |
tweets = examples.get("tweet_text", [])
|
103 |
lores = examples.get("lore_text", [])
|
104 |
for tweet, lore in zip(tweets, lores):
|
@@ -118,12 +123,12 @@ def add_labels(batch):
|
|
118 |
print("π Adding labels to train dataset...")
|
119 |
tokenized_train = tokenized_train.map(add_labels, batched=True)
|
120 |
print("π Adding labels to eval dataset...")
|
121 |
-
tokenized_eval =
|
122 |
|
123 |
# --- Set training arguments ---
|
124 |
training_args = TrainingArguments(
|
125 |
output_dir=output_dir,
|
126 |
-
evaluation_strategy="epoch",
|
127 |
logging_dir="./logs",
|
128 |
logging_steps=500,
|
129 |
num_train_epochs=3,
|
|
|
54 |
# --- Load the dataset using pandas ---
|
55 |
print("π₯ Loading dataset using pandas...")
|
56 |
df = pd.read_json(dataset_path, lines=True)
|
57 |
+
|
58 |
+
# Flatten nested JSON columns: extract "content" from tweet and "response" from lore.
|
59 |
df["tweet_text"] = df["tweet"].apply(lambda x: x.get("content", "") if isinstance(x, dict) else str(x))
|
60 |
df["lore_text"] = df["lore"].apply(lambda x: x.get("response", "") if isinstance(x, dict) else str(x))
|
61 |
+
|
62 |
+
# Optionally drop the original nested columns:
|
63 |
+
df = df.drop(columns=["tweet", "lore"])
|
64 |
+
|
65 |
+
# Now convert the flattened DataFrame into a Hugging Face Dataset.
|
66 |
dataset = Dataset.from_pandas(df)
|
67 |
print("Dataset columns:", dataset.column_names)
|
68 |
+
# Expected columns are now: ['tweet_text', 'lore_text'] plus any others
|
69 |
|
70 |
# --- Split the dataset into train and evaluation subsets ---
|
71 |
split_dataset = dataset.train_test_split(test_size=0.1, seed=42)
|
|
|
81 |
trust_remote_code=True,
|
82 |
device_map="auto",
|
83 |
max_memory=max_memory,
|
84 |
+
offload_folder="./offload",
|
85 |
low_cpu_mem_usage=True,
|
86 |
offload_state_dict=True
|
87 |
)
|
|
|
89 |
model.gradient_checkpointing_enable()
|
90 |
|
91 |
# --- Integrate PEFT (LoRA) ---
|
92 |
+
# Based on your inspection, we target "qkv_proj". Update if necessary.
|
93 |
lora_config = LoraConfig(
|
94 |
r=16,
|
95 |
lora_alpha=32,
|
|
|
103 |
# --- Preprocess the dataset ---
|
104 |
def preprocess_function(examples):
|
105 |
combined_texts = []
|
106 |
+
# Use the new flattened columns: "tweet_text" and "lore_text"
|
107 |
tweets = examples.get("tweet_text", [])
|
108 |
lores = examples.get("lore_text", [])
|
109 |
for tweet, lore in zip(tweets, lores):
|
|
|
123 |
print("π Adding labels to train dataset...")
|
124 |
tokenized_train = tokenized_train.map(add_labels, batched=True)
|
125 |
print("π Adding labels to eval dataset...")
|
126 |
+
tokenized_eval = tokenized_eval.map(add_labels, batched=True)
|
127 |
|
128 |
# --- Set training arguments ---
|
129 |
training_args = TrainingArguments(
|
130 |
output_dir=output_dir,
|
131 |
+
evaluation_strategy="epoch", # (Deprecated: use eval_strategy in future versions)
|
132 |
logging_dir="./logs",
|
133 |
logging_steps=500,
|
134 |
num_train_epochs=3,
|