new_mibera_train / app_bak.py
ivxxdegen's picture
upgrade
1673a4a
raw
history blame
5.93 kB
import os
import shutil
import pandas as pd
from datasets import Dataset
# Disable hf_transfer and set CUDA allocation configuration to help with fragmentation
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:32"
# --- Monkey-patch CONFIG_MAPPING to handle custom model type "phi3" ---
from transformers.configuration_utils import PretrainedConfig
from transformers.models.auto.configuration_auto import CONFIG_MAPPING
class Phi3Config(PretrainedConfig):
model_type = "phi3"
# Register our dummy config class for "phi3"
CONFIG_MAPPING["phi3"] = Phi3Config
# --- Continue with standard imports ---
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from huggingface_hub import HfApi
import torch
# Import PEFT for parameter-efficient fine-tuning
from peft import LoraConfig, get_peft_model
# --- Setup local directories for cache, output, and offload ---
cache_dir = "./cache"
os.makedirs(cache_dir, exist_ok=True)
output_dir = "./output/mibera-v1-merged"
os.makedirs(output_dir, exist_ok=True)
offload_folder = "./offload"
os.makedirs(offload_folder, exist_ok=True)
# Set environment variables for caching to local, writable directories
os.environ["HF_HOME"] = os.path.join(cache_dir, ".huggingface")
os.environ["HF_DATASETS_CACHE"] = os.path.join(cache_dir, "datasets_cache")
os.environ["TRANSFORMERS_CACHE"] = os.path.join(cache_dir, "transformers")
# Clear any existing JSON cache to force a fresh load
json_cache_dir = os.path.join(cache_dir, "datasets_cache", "json")
if os.path.exists(json_cache_dir):
shutil.rmtree(json_cache_dir)
# --- Define paths ---
dataset_path = 'datasets/finetune_dataset_ready.jsonl' # Ensure this is the correct path
model_name = "microsoft/phi-4"
HF_REPO = "ivxxdegen/mibera-v1-merged"
# Verify that the dataset file exists
if not os.path.exists(dataset_path):
print(f"Dataset file {dataset_path} not found. Please upload it!")
exit(1)
# --- Load the dataset using pandas ---
print("πŸ“₯ Loading dataset using pandas...")
df = pd.read_json(dataset_path, lines=True)
dataset = Dataset.from_pandas(df)
print("Dataset columns:", dataset.column_names)
# --- Split the dataset into train and evaluation subsets ---
split_dataset = dataset.train_test_split(test_size=0.1, seed=42)
train_dataset = split_dataset["train"]
eval_dataset = split_dataset["test"]
# --- Load the tokenizer and base model with trust_remote_code=True and offloading ---
print("πŸ“₯ Loading tokenizer and model with trust_remote_code=True and offloading...")
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
max_memory = {0: "10GiB"} # Limit GPU 0 usage to 10GiB; adjust as needed
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
device_map="auto", # Automatically map layers between GPU and CPU
max_memory=max_memory,
offload_folder=offload_folder,
low_cpu_mem_usage=True,
offload_state_dict=True # Offload state dict from meta
)
torch.cuda.empty_cache()
# --- Integrate PEFT (LoRA) ---
# Configure LoRA settings; adjust target_modules as appropriate for your model.
lora_config = LoraConfig(
r=16, # LoRA rank
lora_alpha=32, # Scaling factor
target_modules=["q_proj", "v_proj"], # Typical target modules for transformer models
lora_dropout=0.1,
bias="none"
)
# Wrap the model with PEFT
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
# Optionally enable gradient checkpointing to save memory
model.gradient_checkpointing_enable()
# --- Preprocess the dataset ---
def preprocess_function(examples):
tweets = examples.get("tweet", [])
lores = examples.get("lore", [])
combined_texts = []
for tweet, lore in zip(tweets, lores):
combined_text = "[PERSONALITY] " + tweet + "\n[KNOWLEDGE] " + lore
combined_texts.append(combined_text)
return tokenizer(combined_texts, truncation=True, padding=True)
print("πŸ›  Preprocessing train dataset...")
tokenized_train = train_dataset.map(preprocess_function, batched=True)
print("πŸ›  Preprocessing eval dataset...")
tokenized_eval = eval_dataset.map(preprocess_function, batched=True)
# --- Add labels to tokenized data ---
def add_labels(batch):
batch["labels"] = batch["input_ids"].copy()
return batch
print("πŸ›  Adding labels to train dataset...")
tokenized_train = tokenized_train.map(add_labels, batched=True)
print("πŸ›  Adding labels to eval dataset...")
tokenized_eval = tokenized_eval.map(add_labels, batched=True)
# --- Set training arguments with memory-saving parameters ---
training_args = TrainingArguments(
output_dir=output_dir,
evaluation_strategy="epoch", # (Deprecated: use eval_strategy in future versions)
logging_dir="./logs",
logging_steps=500,
num_train_epochs=3,
per_device_train_batch_size=1, # Very low batch size to minimize memory usage
gradient_accumulation_steps=8, # Accumulate gradients to simulate a larger batch size
fp16=True, # Enable mixed precision training
)
# --- Initialize Trainer ---
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_train,
eval_dataset=tokenized_eval,
tokenizer=tokenizer,
)
# --- (Optional) Clear the existing model repository on Hugging Face ---
api = HfApi()
print(f"πŸ—‘ Deleting previous version from Hugging Face: {HF_REPO}...")
try:
api.delete_repo(HF_REPO, repo_type="model")
except Exception as e:
print(f"⚠️ Could not delete the existing model: {e}. Proceeding with a clean upload...")
# --- Start training ---
print("πŸŽ“ Starting training...")
trainer.train()
# --- Save the fine-tuned model and tokenizer ---
print("πŸ’Ύ Saving model and tokenizer...")
model.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)