issacneedsbread's picture
Update app.py
65a71c7 verified
raw
history blame
1.84 kB
import streamlit as st
from PIL import Image
import numpy as np
import io
import time
import math
# Hugging Face Transformers specific imports
from transformers import AutoModelForSequenceClassification, AutoTokenizer
# Load pre-trained model and tokenizer
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
def rotate_image(image, angle):
"""
Rotate the given PIL image by the given angle
"""
return image.rotate(angle, expand=True)
def main():
st.title("Hugging Face Streamlit Example: Rotating Image")
# Upload an image
st.sidebar.title("Upload Image")
uploaded_file = st.sidebar.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
# Rotation speed adjustment
rotation_speed = st.sidebar.slider("Rotation Speed", min_value=0, max_value=360, value=10, step=1)
if uploaded_file is not None:
# Display the image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
# Rotation angle initialization
rotation_angle = 0
# Display an empty placeholder
rotating_image_placeholder = st.empty()
while True:
# Calculate the new rotation angle
rotation_angle += rotation_speed
rotation_angle %= 360 # Keep angle within 0-359 range
# Rotate the image
rotated_image = rotate_image(image, rotation_angle)
# Display the rotated image
rotating_image_placeholder.image(rotated_image, caption="Rotated Image", use_column_width=True)
# Pause briefly to control the rotation speed
time.sleep(0.1)
if __name__ == "__main__":
main()