Spaces:
Sleeping
Sleeping
update
Browse files- examples/wenet/infer.py +7 -4
- toolbox/k2_sherpa/models.py +6 -1
examples/wenet/infer.py
CHANGED
|
@@ -39,8 +39,11 @@ def main():
|
|
| 39 |
args = get_args()
|
| 40 |
|
| 41 |
model_dir = Path(args.model_dir)
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
feat_config = sherpa.FeatureConfig(normalize_samples=False)
|
| 46 |
feat_config.fbank_opts.frame_opts.samp_freq = args.sample_rate
|
|
@@ -48,8 +51,8 @@ def main():
|
|
| 48 |
feat_config.fbank_opts.frame_opts.dither = 0
|
| 49 |
|
| 50 |
config = sherpa.OfflineRecognizerConfig(
|
| 51 |
-
nn_model=
|
| 52 |
-
tokens=
|
| 53 |
use_gpu=False,
|
| 54 |
feat_config=feat_config,
|
| 55 |
decoding_method="greedy_search",
|
|
|
|
| 39 |
args = get_args()
|
| 40 |
|
| 41 |
model_dir = Path(args.model_dir)
|
| 42 |
+
nn_model_file = model_dir / "final.zip"
|
| 43 |
+
tokens_file = model_dir / "units.txt"
|
| 44 |
+
|
| 45 |
+
print("nn_model_file: {}".format(nn_model_file))
|
| 46 |
+
print("tokens_file: {}".format(tokens_file))
|
| 47 |
|
| 48 |
feat_config = sherpa.FeatureConfig(normalize_samples=False)
|
| 49 |
feat_config.fbank_opts.frame_opts.samp_freq = args.sample_rate
|
|
|
|
| 51 |
feat_config.fbank_opts.frame_opts.dither = 0
|
| 52 |
|
| 53 |
config = sherpa.OfflineRecognizerConfig(
|
| 54 |
+
nn_model=nn_model_file.as_posix(),
|
| 55 |
+
tokens=tokens_file.as_posix(),
|
| 56 |
use_gpu=False,
|
| 57 |
feat_config=feat_config,
|
| 58 |
decoding_method="greedy_search",
|
toolbox/k2_sherpa/models.py
CHANGED
|
@@ -103,6 +103,11 @@ def load_recognizer(repo_id: str,
|
|
| 103 |
)
|
| 104 |
|
| 105 |
if recognizer_type == EnumRecognizerType.sherpa_offline_recognizer.value:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
recognizer = load_sherpa_offline_recognizer(
|
| 107 |
nn_model_file=nn_model_file,
|
| 108 |
tokens_file=tokens_file,
|
|
@@ -110,7 +115,7 @@ def load_recognizer(repo_id: str,
|
|
| 110 |
num_active_paths=num_active_paths,
|
| 111 |
)
|
| 112 |
else:
|
| 113 |
-
raise NotImplementedError("recognizer_type not support: {}".format(recognizer_type
|
| 114 |
return recognizer
|
| 115 |
|
| 116 |
|
|
|
|
| 103 |
)
|
| 104 |
|
| 105 |
if recognizer_type == EnumRecognizerType.sherpa_offline_recognizer.value:
|
| 106 |
+
print("nn_model_file: {}".format(nn_model_file))
|
| 107 |
+
print("tokens_file: {}".format(tokens_file))
|
| 108 |
+
print("decoding_method: {}".format(decoding_method))
|
| 109 |
+
print("num_active_paths: {}".format(num_active_paths))
|
| 110 |
+
|
| 111 |
recognizer = load_sherpa_offline_recognizer(
|
| 112 |
nn_model_file=nn_model_file,
|
| 113 |
tokens_file=tokens_file,
|
|
|
|
| 115 |
num_active_paths=num_active_paths,
|
| 116 |
)
|
| 117 |
else:
|
| 118 |
+
raise NotImplementedError("recognizer_type not support: {}".format(recognizer_type))
|
| 119 |
return recognizer
|
| 120 |
|
| 121 |
|