HoneyTian commited on
Commit
3194abe
·
1 Parent(s): 4e3d688
examples/wenet/toolbox_infer.py CHANGED
@@ -57,31 +57,31 @@ def main():
57
  nn_model_file = local_model_dir / m_dict["nn_model_file"]
58
  tokens_file = local_model_dir / m_dict["tokens_file"]
59
 
60
- # recognizer = models.load_recognizer(
61
- # repo_id=m_dict["repo_id"],
62
- # nn_model_file=nn_model_file.as_posix(),
63
- # tokens_file=tokens_file.as_posix(),
64
- # sub_folder=m_dict["sub_folder"],
65
- # local_model_dir=local_model_dir,
66
- # recognizer_type=m_dict["recognizer_type"],
67
- # decoding_method="greedy_search",
68
- # num_active_paths=2,
69
- # )
70
-
71
- feat_config = sherpa.FeatureConfig(normalize_samples=False)
72
- feat_config.fbank_opts.frame_opts.samp_freq = args.sample_rate
73
- feat_config.fbank_opts.mel_opts.num_bins = 80
74
- feat_config.fbank_opts.frame_opts.dither = 0
75
-
76
- config = sherpa.OfflineRecognizerConfig(
77
- nn_model=nn_model_file.as_posix(),
78
- tokens=tokens_file.as_posix(),
79
- use_gpu=False,
80
- feat_config=feat_config,
81
  decoding_method="greedy_search",
82
  num_active_paths=2,
83
  )
84
- recognizer = sherpa.OfflineRecognizer(config)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
 
86
  text = decode.decode_by_recognizer(recognizer=recognizer,
87
  filename=out_filename.as_posix(),
 
57
  nn_model_file = local_model_dir / m_dict["nn_model_file"]
58
  tokens_file = local_model_dir / m_dict["tokens_file"]
59
 
60
+ recognizer = models.load_recognizer(
61
+ repo_id=m_dict["repo_id"],
62
+ nn_model_file=nn_model_file.as_posix(),
63
+ tokens_file=tokens_file.as_posix(),
64
+ sub_folder=m_dict["sub_folder"],
65
+ local_model_dir=local_model_dir,
66
+ recognizer_type=m_dict["recognizer_type"],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  decoding_method="greedy_search",
68
  num_active_paths=2,
69
  )
70
+
71
+ # feat_config = sherpa.FeatureConfig(normalize_samples=False)
72
+ # feat_config.fbank_opts.frame_opts.samp_freq = args.sample_rate
73
+ # feat_config.fbank_opts.mel_opts.num_bins = 80
74
+ # feat_config.fbank_opts.frame_opts.dither = 0
75
+ #
76
+ # config = sherpa.OfflineRecognizerConfig(
77
+ # nn_model=nn_model_file.as_posix(),
78
+ # tokens=tokens_file.as_posix(),
79
+ # use_gpu=False,
80
+ # feat_config=feat_config,
81
+ # decoding_method="greedy_search",
82
+ # num_active_paths=2,
83
+ # )
84
+ # recognizer = sherpa.OfflineRecognizer(config)
85
 
86
  text = decode.decode_by_recognizer(recognizer=recognizer,
87
  filename=out_filename.as_posix(),
toolbox/k2_sherpa/models.py CHANGED
@@ -56,12 +56,11 @@ def download_model(repo_id: str,
56
  return nn_model_file, tokens_file
57
 
58
 
59
- @lru_cache(maxsize=10)
60
  def load_sherpa_offline_recognizer(nn_model_file: str,
61
  tokens_file: str,
62
  sample_rate: int = 16000,
63
  num_active_paths: int = 2,
64
- decoding_method: EnumDecodingMethod = EnumDecodingMethod.greedy_search,
65
  num_mel_bins: int = 80,
66
  frame_dither: int = 0,
67
  ):
@@ -90,7 +89,7 @@ def load_recognizer(repo_id: str,
90
  sub_folder: str,
91
  local_model_dir: str,
92
  recognizer_type: str,
93
- decoding_method: EnumDecodingMethod = EnumDecodingMethod.greedy_search,
94
  num_active_paths: int = 4,
95
  ):
96
  if not os.path.exists(local_model_dir):
 
56
  return nn_model_file, tokens_file
57
 
58
 
 
59
  def load_sherpa_offline_recognizer(nn_model_file: str,
60
  tokens_file: str,
61
  sample_rate: int = 16000,
62
  num_active_paths: int = 2,
63
+ decoding_method: str = "greedy_search",
64
  num_mel_bins: int = 80,
65
  frame_dither: int = 0,
66
  ):
 
89
  sub_folder: str,
90
  local_model_dir: str,
91
  recognizer_type: str,
92
+ decoding_method: str = "greedy_search",
93
  num_active_paths: int = 4,
94
  ):
95
  if not os.path.exists(local_model_dir):