Spaces:
Running
Running
| #!/usr/bin/python3 | |
| # -*- coding: utf-8 -*- | |
| import argparse | |
| import os | |
| from pathlib import Path | |
| import sys | |
| pwd = os.path.abspath(os.path.dirname(__file__)) | |
| sys.path.append(os.path.join(pwd, "../../")) | |
| import librosa | |
| import numpy as np | |
| import sherpa | |
| from scipy.io import wavfile | |
| import torch | |
| import torchaudio | |
| from project_settings import project_path, temp_directory | |
| def get_args(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--model_dir", | |
| default=(project_path / "pretrained_models/huggingface/csukuangfj/wenet-chinese-model").as_posix(), | |
| type=str | |
| ) | |
| parser.add_argument( | |
| "--filename", | |
| default=(project_path / "data/test_wavs/paraformer-zh/si_chuan_hua.wav").as_posix(), | |
| type=str | |
| ) | |
| parser.add_argument("--sample_rate", default=16000, type=int) | |
| args = parser.parse_args() | |
| return args | |
| def main(): | |
| args = get_args() | |
| model_dir = Path(args.model_dir) | |
| nn_model_file = model_dir / "final.zip" | |
| tokens_file = model_dir / "units.txt" | |
| print("nn_model_file: {}".format(nn_model_file)) | |
| print("tokens_file: {}".format(tokens_file)) | |
| feat_config = sherpa.FeatureConfig(normalize_samples=False) | |
| feat_config.fbank_opts.frame_opts.samp_freq = args.sample_rate | |
| feat_config.fbank_opts.mel_opts.num_bins = 80 | |
| feat_config.fbank_opts.frame_opts.dither = 0 | |
| config = sherpa.OfflineRecognizerConfig( | |
| nn_model=nn_model_file.as_posix(), | |
| tokens=tokens_file.as_posix(), | |
| use_gpu=False, | |
| feat_config=feat_config, | |
| decoding_method="greedy_search", | |
| num_active_paths=2, | |
| ) | |
| recognizer = sherpa.OfflineRecognizer(config) | |
| signal, sample_rate = librosa.load(args.filename, sr=args.sample_rate) | |
| signal *= 32768.0 | |
| signal = np.array(signal, dtype=np.int16) | |
| temp_file = temp_directory / "temp.wav" | |
| wavfile.write( | |
| temp_file.as_posix(), | |
| rate=args.sample_rate, | |
| data=signal | |
| ) | |
| s = recognizer.create_stream() | |
| s.accept_wave_file( | |
| temp_file.as_posix() | |
| ) | |
| recognizer.decode_stream(s) | |
| text = s.result.text.strip() | |
| text = text.lower() | |
| print("text: {}".format(text)) | |
| return | |
| if __name__ == "__main__": | |
| main() | |