inoculatemedia commited on
Commit
0d9e363
Β·
verified Β·
1 Parent(s): d5a4556

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +120 -1
app.py CHANGED
@@ -1 +1,120 @@
1
- ss
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from dotenv import load_dotenv
3
+ from scrapegraphai.graphs import SmartScraperGraph
4
+ from scrapegraphai.utils import prettify_exec_info
5
+ from langchain_community.llms import HuggingFaceEndpoint
6
+ from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
7
+ import gradio as gr
8
+ import subprocess
9
+ import json
10
+ import re
11
+
12
+ # Ensure Playwright installs required browsers and dependencies
13
+ subprocess.run(["playwright", "install"])
14
+ #subprocess.run(["playwright", "install-deps"])
15
+
16
+ # Load environment variables
17
+ load_dotenv()
18
+ HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
19
+
20
+ # Initialize the model instances
21
+ #repo_id = "mistralai/Mistral-7B-Instruct-v0.2"
22
+ repo_id = "Qwen/Qwen2.5-72B-Instruct"
23
+
24
+ llm_model_instance = HuggingFaceEndpoint(
25
+ repo_id=repo_id, max_length=128, temperature=0.5, token=HUGGINGFACEHUB_API_TOKEN
26
+ )
27
+
28
+ embedder_model_instance = HuggingFaceInferenceAPIEmbeddings(
29
+ api_key=HUGGINGFACEHUB_API_TOKEN, model_name="sentence-transformers/all-MiniLM-l6-v2"
30
+ )
31
+
32
+ graph_config = {
33
+ "llm": {
34
+ "model_instance": llm_model_instance,
35
+ "model_tokens": 100000,
36
+ },
37
+ "embeddings": {"model_instance": embedder_model_instance}
38
+ }
39
+ #######
40
+ def clean_json_string(json_str):
41
+ """
42
+ Removes any comments or prefixes before the actual JSON content.
43
+ Returns the cleaned JSON string.
44
+ """
45
+ # Find the first occurrence of '{'
46
+ json_start = json_str.find('{')
47
+ if json_start == -1:
48
+ # If no '{' is found, try with '[' for arrays
49
+ json_start = json_str.find('[')
50
+ if json_start == -1:
51
+ return json_str # Return original if no JSON markers found
52
+
53
+ # Extract everything from the first JSON marker
54
+ cleaned_str = json_str[json_start:]
55
+
56
+ # Verify it's valid JSON
57
+ try:
58
+ json.loads(cleaned_str)
59
+ return cleaned_str
60
+ except json.JSONDecodeError:
61
+ return json_str # Return original if cleaning results in invalid JSON
62
+
63
+ def scrape_and_summarize(prompt, source):
64
+ smart_scraper_graph = SmartScraperGraph(
65
+ prompt=prompt,
66
+ source=source,
67
+ config=graph_config
68
+ )
69
+ result = smart_scraper_graph.run()
70
+
71
+ # Clean the result if it's a string
72
+ if isinstance(result, str):
73
+ result = clean_json_string(result)
74
+
75
+ exec_info = smart_scraper_graph.get_execution_info()
76
+ return result, prettify_exec_info(exec_info)
77
+
78
+
79
+
80
+ #######
81
+ # def scrape_and_summarize(prompt, source):
82
+ # smart_scraper_graph = SmartScraperGraph(
83
+ # prompt=prompt,
84
+ # source=source,
85
+ # config=graph_config
86
+ # )
87
+ # result = smart_scraper_graph.run()
88
+ # exec_info = smart_scraper_graph.get_execution_info()
89
+ # return result, prettify_exec_info(exec_info)
90
+
91
+ # Gradio interface
92
+ with gr.Blocks() as demo:
93
+ gr.Markdown("# Scrape websites, no-code version")
94
+ gr.Markdown("""
95
+ Easily scrape and summarize web content using advanced AI models on the Hugging Face Hub without writing any code. Input your desired prompt and source URL to get started.
96
+ This is a no-code version of the excellent library [ScrapeGraphAI](https://github.com/VinciGit00/Scrapegraph-ai).
97
+ It's a basic demo and a work in progress. Please contribute to it to make it more useful!
98
+ *Note: You might need to add "Output only the results; do not add any comments or include 'JSON OUTPUT' or similar phrases" in your prompt to ensure the LLM only provides the result.*
99
+ """)
100
+ with gr.Row():
101
+ with gr.Column():
102
+
103
+ model_dropdown = gr.Textbox(label="Model", value="Qwen/Qwen2.5-72B-Instruct")
104
+ prompt_input = gr.Textbox(label="Prompt", value="List all the press releases with their headlines and urls. Output only the results; do not add any comments or include 'JSON OUTPUT' or similar phrases.")
105
+ source_input = gr.Textbox(label="Source URL", value="https://www.whitehouse.gov/")
106
+ scrape_button = gr.Button("Scrape and Summarize")
107
+
108
+ with gr.Column():
109
+ result_output = gr.JSON(label="Result")
110
+ exec_info_output = gr.Textbox(label="Execution Info")
111
+
112
+ scrape_button.click(
113
+ scrape_and_summarize,
114
+ inputs=[prompt_input, source_input],
115
+ outputs=[result_output, exec_info_output]
116
+ )
117
+
118
+ # Launch the Gradio app
119
+ if __name__ == "__main__":
120
+ demo.launch()