|
from email.policy import strict |
|
import torch |
|
import os |
|
|
|
import pytorch_lightning as pl |
|
import torch.nn.functional as F |
|
from contextlib import contextmanager |
|
import numpy as np |
|
from qa_mdt.audioldm_train.modules.diffusionmodules.ema import * |
|
|
|
from torch.optim.lr_scheduler import LambdaLR |
|
from qa_mdt.audioldm_train.modules.diffusionmodules.model import Encoder, Decoder |
|
from qa_mdt.audioldm_train.modules.diffusionmodules.distributions import ( |
|
DiagonalGaussianDistribution, |
|
) |
|
|
|
import wandb |
|
from qa_mdt.audioldm_train.utilities.model_util import instantiate_from_config |
|
import soundfile as sf |
|
|
|
from qa_mdt.audioldm_train.utilities.model_util import get_vocoder |
|
from qa_mdt.audioldm_train.utilities.tools import synth_one_sample |
|
import itertools |
|
|
|
|
|
class AutoencoderKL(pl.LightningModule): |
|
def __init__( |
|
self, |
|
ddconfig=None, |
|
lossconfig=None, |
|
batchsize=None, |
|
embed_dim=None, |
|
time_shuffle=1, |
|
subband=1, |
|
sampling_rate=16000, |
|
ckpt_path=None, |
|
reload_from_ckpt=None, |
|
ignore_keys=[], |
|
image_key="fbank", |
|
colorize_nlabels=None, |
|
monitor=None, |
|
base_learning_rate=1e-5, |
|
): |
|
super().__init__() |
|
self.automatic_optimization = False |
|
assert ( |
|
"mel_bins" in ddconfig.keys() |
|
), "mel_bins is not specified in the Autoencoder config" |
|
num_mel = ddconfig["mel_bins"] |
|
self.image_key = image_key |
|
self.sampling_rate = sampling_rate |
|
self.encoder = Encoder(**ddconfig) |
|
self.decoder = Decoder(**ddconfig) |
|
|
|
self.loss = instantiate_from_config(lossconfig) |
|
self.subband = int(subband) |
|
|
|
if self.subband > 1: |
|
print("Use subband decomposition %s" % self.subband) |
|
|
|
assert ddconfig["double_z"] |
|
self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1) |
|
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) |
|
|
|
if self.image_key == "fbank": |
|
self.vocoder = get_vocoder(None, "cpu", num_mel) |
|
self.embed_dim = embed_dim |
|
if colorize_nlabels is not None: |
|
assert type(colorize_nlabels) == int |
|
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) |
|
if monitor is not None: |
|
self.monitor = monitor |
|
if ckpt_path is not None: |
|
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) |
|
self.learning_rate = float(base_learning_rate) |
|
print("Initial learning rate %s" % self.learning_rate) |
|
|
|
self.time_shuffle = time_shuffle |
|
self.reload_from_ckpt = reload_from_ckpt |
|
self.reloaded = False |
|
self.mean, self.std = None, None |
|
|
|
self.feature_cache = None |
|
self.flag_first_run = True |
|
self.train_step = 0 |
|
|
|
self.logger_save_dir = None |
|
self.logger_exp_name = None |
|
self.logger_exp_group_name = None |
|
|
|
if not self.reloaded and self.reload_from_ckpt is not None: |
|
|
|
|
|
print("--> Reload weight of autoencoder from %s" % self.reload_from_ckpt) |
|
checkpoint = torch.load(self.reload_from_ckpt) |
|
|
|
load_todo_keys = {} |
|
pretrained_state_dict = checkpoint["state_dict"] |
|
current_state_dict = self.state_dict() |
|
for key in current_state_dict: |
|
if ( |
|
key in pretrained_state_dict.keys() |
|
and pretrained_state_dict[key].size() |
|
== current_state_dict[key].size() |
|
): |
|
load_todo_keys[key] = pretrained_state_dict[key] |
|
else: |
|
print("Key %s mismatch during loading, seems fine" % key) |
|
|
|
self.load_state_dict(load_todo_keys, strict=False) |
|
self.reloaded = True |
|
else: |
|
print("Train from scratch") |
|
|
|
def get_log_dir(self): |
|
return os.path.join( |
|
self.logger_save_dir, self.logger_exp_group_name, self.logger_exp_name |
|
) |
|
|
|
def set_log_dir(self, save_dir, exp_group_name, exp_name): |
|
self.logger_save_dir = save_dir |
|
self.logger_exp_name = exp_name |
|
self.logger_exp_group_name = exp_group_name |
|
|
|
def init_from_ckpt(self, path, ignore_keys=list()): |
|
sd = torch.load(path, map_location="cpu")["state_dict"] |
|
keys = list(sd.keys()) |
|
for k in keys: |
|
for ik in ignore_keys: |
|
if k.startswith(ik): |
|
print("Deleting key {} from state_dict.".format(k)) |
|
del sd[k] |
|
self.load_state_dict(sd, strict=False) |
|
print(f"Restored from {path}") |
|
|
|
def encode(self, x): |
|
|
|
x = self.freq_split_subband(x) |
|
h = self.encoder(x) |
|
moments = self.quant_conv(h) |
|
posterior = DiagonalGaussianDistribution(moments) |
|
return posterior |
|
|
|
def decode(self, z): |
|
z = self.post_quant_conv(z) |
|
dec = self.decoder(z) |
|
|
|
|
|
dec = self.freq_merge_subband(dec) |
|
return dec |
|
|
|
def decode_to_waveform(self, dec): |
|
from qa_mdt.audioldm_train.utilities.model_util import vocoder_infer |
|
|
|
if self.image_key == "fbank": |
|
dec = dec.squeeze(1).permute(0, 2, 1) |
|
wav_reconstruction = vocoder_infer(dec, self.vocoder) |
|
elif self.image_key == "stft": |
|
dec = dec.squeeze(1).permute(0, 2, 1) |
|
wav_reconstruction = self.wave_decoder(dec) |
|
return wav_reconstruction |
|
|
|
def visualize_latent(self, input): |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
np.save("input.npy", input.cpu().detach().numpy()) |
|
|
|
time_input = input.clone() |
|
time_input[:, :, :, :32] *= 0 |
|
time_input[:, :, :, :32] -= 11.59 |
|
|
|
np.save("time_input.npy", time_input.cpu().detach().numpy()) |
|
|
|
posterior = self.encode(time_input) |
|
latent = posterior.sample() |
|
np.save("time_latent.npy", latent.cpu().detach().numpy()) |
|
avg_latent = torch.mean(latent, dim=1) |
|
for i in range(avg_latent.size(0)): |
|
plt.imshow(avg_latent[i].cpu().detach().numpy().T) |
|
plt.savefig("freq_%s.png" % i) |
|
plt.close() |
|
|
|
freq_input = input.clone() |
|
freq_input[:, :, :512, :] *= 0 |
|
freq_input[:, :, :512, :] -= 11.59 |
|
|
|
np.save("freq_input.npy", freq_input.cpu().detach().numpy()) |
|
|
|
posterior = self.encode(freq_input) |
|
latent = posterior.sample() |
|
np.save("freq_latent.npy", latent.cpu().detach().numpy()) |
|
avg_latent = torch.mean(latent, dim=1) |
|
for i in range(avg_latent.size(0)): |
|
plt.imshow(avg_latent[i].cpu().detach().numpy().T) |
|
plt.savefig("time_%s.png" % i) |
|
plt.close() |
|
|
|
def forward(self, input, sample_posterior=True): |
|
posterior = self.encode(input) |
|
if sample_posterior: |
|
z = posterior.sample() |
|
else: |
|
z = posterior.mode() |
|
|
|
if self.flag_first_run: |
|
print("Latent size: ", z.size()) |
|
self.flag_first_run = False |
|
|
|
dec = self.decode(z) |
|
|
|
return dec, posterior |
|
|
|
def get_input(self, batch): |
|
fname, text, label_indices, waveform, stft, fbank = ( |
|
batch["fname"], |
|
batch["text"], |
|
batch["label_vector"], |
|
batch["waveform"], |
|
batch["stft"], |
|
batch["log_mel_spec"], |
|
) |
|
|
|
|
|
|
|
|
|
|
|
ret = {} |
|
|
|
ret["fbank"], ret["stft"], ret["fname"], ret["waveform"] = ( |
|
fbank.unsqueeze(1), |
|
stft.unsqueeze(1), |
|
fname, |
|
waveform.unsqueeze(1), |
|
) |
|
|
|
return ret |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def freq_split_subband(self, fbank): |
|
if self.subband == 1 or self.image_key != "stft": |
|
return fbank |
|
|
|
bs, ch, tstep, fbins = fbank.size() |
|
|
|
assert fbank.size(-1) % self.subband == 0 |
|
assert ch == 1 |
|
|
|
return ( |
|
fbank.squeeze(1) |
|
.reshape(bs, tstep, self.subband, fbins // self.subband) |
|
.permute(0, 2, 1, 3) |
|
) |
|
|
|
def freq_merge_subband(self, subband_fbank): |
|
if self.subband == 1 or self.image_key != "stft": |
|
return subband_fbank |
|
assert subband_fbank.size(1) == self.subband |
|
bs, sub_ch, tstep, fbins = subband_fbank.size() |
|
return subband_fbank.permute(0, 2, 1, 3).reshape(bs, tstep, -1).unsqueeze(1) |
|
|
|
def training_step(self, batch, batch_idx): |
|
g_opt, d_opt = self.optimizers() |
|
inputs_dict = self.get_input(batch) |
|
inputs = inputs_dict[self.image_key] |
|
waveform = inputs_dict["waveform"] |
|
|
|
if batch_idx % 5000 == 0 and self.local_rank == 0: |
|
print("Log train image") |
|
self.log_images(inputs, waveform=waveform) |
|
|
|
reconstructions, posterior = self(inputs) |
|
|
|
if self.image_key == "stft": |
|
rec_waveform = self.decode_to_waveform(reconstructions) |
|
else: |
|
rec_waveform = None |
|
|
|
|
|
|
|
|
|
discloss, log_dict_disc = self.loss( |
|
inputs=inputs, |
|
reconstructions=reconstructions, |
|
posteriors=posterior, |
|
waveform=waveform, |
|
rec_waveform=rec_waveform, |
|
optimizer_idx=1, |
|
global_step=self.global_step, |
|
last_layer=self.get_last_layer(), |
|
split="train", |
|
) |
|
|
|
self.log( |
|
"discloss", |
|
discloss, |
|
prog_bar=True, |
|
logger=True, |
|
on_step=True, |
|
on_epoch=True, |
|
) |
|
self.log_dict( |
|
log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False |
|
) |
|
d_opt.zero_grad() |
|
self.manual_backward(discloss) |
|
d_opt.step() |
|
|
|
self.log( |
|
"train_step", |
|
self.train_step, |
|
prog_bar=False, |
|
logger=False, |
|
on_step=True, |
|
on_epoch=False, |
|
) |
|
|
|
self.log( |
|
"global_step", |
|
float(self.global_step), |
|
prog_bar=True, |
|
logger=True, |
|
on_step=True, |
|
on_epoch=False, |
|
) |
|
|
|
aeloss, log_dict_ae = self.loss( |
|
inputs=inputs, |
|
reconstructions=reconstructions, |
|
posteriors=posterior, |
|
waveform=waveform, |
|
rec_waveform=rec_waveform, |
|
optimizer_idx=0, |
|
global_step=self.global_step, |
|
last_layer=self.get_last_layer(), |
|
split="train", |
|
) |
|
self.log( |
|
"aeloss", |
|
aeloss, |
|
prog_bar=True, |
|
logger=True, |
|
on_step=True, |
|
on_epoch=False, |
|
) |
|
self.log( |
|
"posterior_std", |
|
torch.mean(posterior.var), |
|
prog_bar=True, |
|
logger=True, |
|
on_step=True, |
|
on_epoch=False, |
|
) |
|
self.log_dict( |
|
log_dict_ae, prog_bar=True, logger=True, on_step=True, on_epoch=False |
|
) |
|
|
|
self.train_step += 1 |
|
g_opt.zero_grad() |
|
self.manual_backward(aeloss) |
|
g_opt.step() |
|
|
|
def validation_step(self, batch, batch_idx): |
|
inputs_dict = self.get_input(batch) |
|
inputs = inputs_dict[self.image_key] |
|
waveform = inputs_dict["waveform"] |
|
|
|
if batch_idx <= 3: |
|
print("Log val image") |
|
self.log_images(inputs, train=False, waveform=waveform) |
|
|
|
reconstructions, posterior = self(inputs) |
|
|
|
if self.image_key == "stft": |
|
rec_waveform = self.decode_to_waveform(reconstructions) |
|
else: |
|
rec_waveform = None |
|
|
|
aeloss, log_dict_ae = self.loss( |
|
inputs=inputs, |
|
reconstructions=reconstructions, |
|
posteriors=posterior, |
|
waveform=waveform, |
|
rec_waveform=rec_waveform, |
|
optimizer_idx=0, |
|
global_step=self.global_step, |
|
last_layer=self.get_last_layer(), |
|
split="val", |
|
) |
|
|
|
discloss, log_dict_disc = self.loss( |
|
inputs=inputs, |
|
reconstructions=reconstructions, |
|
posteriors=posterior, |
|
waveform=waveform, |
|
rec_waveform=rec_waveform, |
|
optimizer_idx=1, |
|
global_step=self.global_step, |
|
last_layer=self.get_last_layer(), |
|
split="val", |
|
) |
|
|
|
self.log_dict(log_dict_ae) |
|
self.log_dict(log_dict_disc) |
|
return self.log_dict |
|
|
|
def test_step(self, batch, batch_idx): |
|
inputs_dict = self.get_input(batch) |
|
inputs = inputs_dict[self.image_key] |
|
waveform = inputs_dict["waveform"] |
|
fnames = inputs_dict["fname"] |
|
|
|
reconstructions, posterior = self(inputs) |
|
save_path = os.path.join( |
|
self.get_log_dir(), "autoencoder_result_audiocaps", str(self.global_step) |
|
) |
|
|
|
if self.image_key == "stft": |
|
wav_prediction = self.decode_to_waveform(reconstructions) |
|
wav_original = waveform |
|
self.save_wave( |
|
wav_prediction, fnames, os.path.join(save_path, "stft_wav_prediction") |
|
) |
|
else: |
|
wav_vocoder_gt, wav_prediction = synth_one_sample( |
|
inputs.squeeze(1), |
|
reconstructions.squeeze(1), |
|
labels="validation", |
|
vocoder=self.vocoder, |
|
) |
|
self.save_wave( |
|
wav_vocoder_gt, fnames, os.path.join(save_path, "fbank_vocoder_gt_wave") |
|
) |
|
self.save_wave( |
|
wav_prediction, fnames, os.path.join(save_path, "fbank_wav_prediction") |
|
) |
|
|
|
def save_wave(self, batch_wav, fname, save_dir): |
|
os.makedirs(save_dir, exist_ok=True) |
|
|
|
for wav, name in zip(batch_wav, fname): |
|
name = os.path.basename(name) |
|
|
|
sf.write(os.path.join(save_dir, name), wav, samplerate=self.sampling_rate) |
|
|
|
def configure_optimizers(self): |
|
lr = self.learning_rate |
|
params = ( |
|
list(self.encoder.parameters()) |
|
+ list(self.decoder.parameters()) |
|
+ list(self.quant_conv.parameters()) |
|
+ list(self.post_quant_conv.parameters()) |
|
) |
|
|
|
if self.image_key == "stft": |
|
params += list(self.wave_decoder.parameters()) |
|
|
|
opt_ae = torch.optim.Adam(params, lr=lr, betas=(0.5, 0.9)) |
|
|
|
if self.image_key == "fbank": |
|
disc_params = self.loss.discriminator.parameters() |
|
elif self.image_key == "stft": |
|
disc_params = itertools.chain( |
|
self.loss.msd.parameters(), self.loss.mpd.parameters() |
|
) |
|
|
|
opt_disc = torch.optim.Adam(disc_params, lr=lr, betas=(0.5, 0.9)) |
|
return [opt_ae, opt_disc], [] |
|
|
|
def get_last_layer(self): |
|
return self.decoder.conv_out.weight |
|
|
|
@torch.no_grad() |
|
def log_images(self, batch, train=True, only_inputs=False, waveform=None, **kwargs): |
|
log = dict() |
|
x = batch.to(self.device) |
|
if not only_inputs: |
|
xrec, posterior = self(x) |
|
log["samples"] = self.decode(posterior.sample()) |
|
log["reconstructions"] = xrec |
|
|
|
log["inputs"] = x |
|
wavs = self._log_img(log, train=train, index=0, waveform=waveform) |
|
return wavs |
|
|
|
def _log_img(self, log, train=True, index=0, waveform=None): |
|
images_input = self.tensor2numpy(log["inputs"][index, 0]).T |
|
images_reconstruct = self.tensor2numpy(log["reconstructions"][index, 0]).T |
|
images_samples = self.tensor2numpy(log["samples"][index, 0]).T |
|
|
|
if train: |
|
name = "train" |
|
else: |
|
name = "val" |
|
|
|
if self.logger is not None: |
|
self.logger.log_image( |
|
"img_%s" % name, |
|
[images_input, images_reconstruct, images_samples], |
|
caption=["input", "reconstruct", "samples"], |
|
) |
|
|
|
inputs, reconstructions, samples = ( |
|
log["inputs"], |
|
log["reconstructions"], |
|
log["samples"], |
|
) |
|
|
|
if self.image_key == "fbank": |
|
wav_original, wav_prediction = synth_one_sample( |
|
inputs[index], |
|
reconstructions[index], |
|
labels="validation", |
|
vocoder=self.vocoder, |
|
) |
|
wav_original, wav_samples = synth_one_sample( |
|
inputs[index], samples[index], labels="validation", vocoder=self.vocoder |
|
) |
|
wav_original, wav_samples, wav_prediction = ( |
|
wav_original[0], |
|
wav_samples[0], |
|
wav_prediction[0], |
|
) |
|
elif self.image_key == "stft": |
|
wav_prediction = ( |
|
self.decode_to_waveform(reconstructions)[index, 0] |
|
.cpu() |
|
.detach() |
|
.numpy() |
|
) |
|
wav_samples = ( |
|
self.decode_to_waveform(samples)[index, 0].cpu().detach().numpy() |
|
) |
|
wav_original = waveform[index, 0].cpu().detach().numpy() |
|
|
|
if self.logger is not None: |
|
self.logger.experiment.log( |
|
{ |
|
"original_%s" |
|
% name: wandb.Audio( |
|
wav_original, caption="original", sample_rate=self.sampling_rate |
|
), |
|
"reconstruct_%s" |
|
% name: wandb.Audio( |
|
wav_prediction, |
|
caption="reconstruct", |
|
sample_rate=self.sampling_rate, |
|
), |
|
"samples_%s" |
|
% name: wandb.Audio( |
|
wav_samples, caption="samples", sample_rate=self.sampling_rate |
|
), |
|
} |
|
) |
|
|
|
return wav_original, wav_prediction, wav_samples |
|
|
|
def tensor2numpy(self, tensor): |
|
return tensor.cpu().detach().numpy() |
|
|
|
def to_rgb(self, x): |
|
assert self.image_key == "segmentation" |
|
if not hasattr(self, "colorize"): |
|
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) |
|
x = F.conv2d(x, weight=self.colorize) |
|
x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0 |
|
return x |
|
|
|
|
|
class IdentityFirstStage(torch.nn.Module): |
|
def __init__(self, *args, vq_interface=False, **kwargs): |
|
self.vq_interface = vq_interface |
|
super().__init__() |
|
|
|
def encode(self, x, *args, **kwargs): |
|
return x |
|
|
|
def decode(self, x, *args, **kwargs): |
|
return x |
|
|
|
def quantize(self, x, *args, **kwargs): |
|
if self.vq_interface: |
|
return x, None, [None, None, None] |
|
return x |
|
|
|
def forward(self, x, *args, **kwargs): |
|
return x |
|
|