jadechoghari's picture
add model
9b9e0ee verified
raw
history blame
14.5 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------
import builtins
import datetime
import os
import time
from collections import defaultdict, deque
from pathlib import Path
import torch
import torch.distributed as dist
from torch._six import inf
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value,
)
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if v is None:
continue
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError(
"'{}' object has no attribute '{}'".format(type(self).__name__, attr)
)
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append("{}: {}".format(name, str(meter)))
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ""
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt="{avg:.4f}")
data_time = SmoothedValue(fmt="{avg:.4f}")
space_fmt = ":" + str(len(str(len(iterable)))) + "d"
log_msg = [
header,
"[{0" + space_fmt + "}/{1}]",
"eta: {eta}",
"{meters}",
"time: {time}",
"data: {data}",
]
if torch.cuda.is_available():
log_msg.append("max mem: {memory:.0f}")
log_msg = self.delimiter.join(log_msg)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(
log_msg.format(
i,
len(iterable),
eta=eta_string,
meters=str(self),
time=str(iter_time),
data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB,
)
)
else:
print(
log_msg.format(
i,
len(iterable),
eta=eta_string,
meters=str(self),
time=str(iter_time),
data=str(data_time),
)
)
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print(
"{} Total time: {} ({:.4f} s / it)".format(
header, total_time_str, total_time / len(iterable)
)
)
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
builtin_print = builtins.print
def print(*args, **kwargs):
force = kwargs.pop("force", False)
force = force or (get_world_size() > 8)
if is_master or force:
now = datetime.datetime.now().time()
builtin_print("[{}] ".format(now), end="") # print with time stamp
builtin_print(*args, **kwargs)
builtins.print = print
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def init_distributed_mode(args):
if args.dist_on_itp:
args.rank = int(os.environ["OMPI_COMM_WORLD_RANK"])
args.world_size = int(os.environ["OMPI_COMM_WORLD_SIZE"])
args.gpu = int(os.environ["OMPI_COMM_WORLD_LOCAL_RANK"])
args.dist_url = "tcp://%s:%s" % (
os.environ["MASTER_ADDR"],
os.environ["MASTER_PORT"],
)
os.environ["LOCAL_RANK"] = str(args.gpu)
os.environ["RANK"] = str(args.rank)
os.environ["WORLD_SIZE"] = str(args.world_size)
# ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"]
elif "RANK" in os.environ and "WORLD_SIZE" in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ["WORLD_SIZE"])
args.gpu = int(os.environ["LOCAL_RANK"])
elif "SLURM_PROCID" in os.environ:
args.rank = int(os.environ["SLURM_PROCID"])
args.gpu = args.rank % torch.cuda.device_count()
else:
print("Not using distributed mode")
setup_for_distributed(is_master=True) # hack
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = "nccl"
print(
"| distributed init (rank {}): {}, gpu {}".format(
args.rank, args.dist_url, args.gpu
),
flush=True,
)
torch.distributed.init_process_group(
backend=args.dist_backend,
init_method=args.dist_url,
world_size=args.world_size,
rank=args.rank,
)
torch.distributed.barrier()
setup_for_distributed(args.rank == 0)
class NativeScalerWithGradNormCount:
state_dict_key = "amp_scaler"
def __init__(self):
self._scaler = torch.cuda.amp.GradScaler()
def __call__(
self,
loss,
optimizer,
clip_grad=None,
parameters=None,
create_graph=False,
update_grad=True,
):
self._scaler.scale(loss).backward(create_graph=create_graph)
if update_grad:
if clip_grad is not None:
assert parameters is not None
self._scaler.unscale_(
optimizer
) # unscale the gradients of optimizer's assigned params in-place
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
else:
self._scaler.unscale_(optimizer)
norm = get_grad_norm_(parameters)
self._scaler.step(optimizer)
self._scaler.update()
else:
norm = None
return norm
def state_dict(self):
return self._scaler.state_dict()
def load_state_dict(self, state_dict):
self._scaler.load_state_dict(state_dict)
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = [p for p in parameters if p.grad is not None]
norm_type = float(norm_type)
if len(parameters) == 0:
return torch.tensor(0.0)
device = parameters[0].grad.device
if norm_type == inf:
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
else:
total_norm = torch.norm(
torch.stack(
[torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]
),
norm_type,
)
return total_norm
def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler):
output_dir = Path(args.output_dir)
epoch_name = str(epoch)
if loss_scaler is not None:
checkpoint_paths = [output_dir / ("checkpoint-%s.pth" % epoch_name)]
for checkpoint_path in checkpoint_paths:
to_save = {
"model": model_without_ddp.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": epoch,
"scaler": loss_scaler.state_dict(),
"args": args,
}
save_on_master(to_save, checkpoint_path)
else:
client_state = {"epoch": epoch}
model.save_checkpoint(
save_dir=args.output_dir,
tag="checkpoint-%s" % epoch_name,
client_state=client_state,
)
def load_model(args, model_without_ddp, optimizer, loss_scaler):
if args.resume:
if args.resume.startswith("https"):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location="cpu", check_hash=True
)
else:
checkpoint = torch.load(args.resume, map_location="cpu")
model_without_ddp.load_state_dict(checkpoint["model"])
print("Resume checkpoint %s" % args.resume)
if (
"optimizer" in checkpoint
and "epoch" in checkpoint
and not (hasattr(args, "eval") and args.eval)
):
optimizer.load_state_dict(checkpoint["optimizer"])
args.start_epoch = checkpoint["epoch"] + 1
if "scaler" in checkpoint:
loss_scaler.load_state_dict(checkpoint["scaler"])
print("With optim & sched!")
def all_reduce_mean(x):
world_size = get_world_size()
if world_size > 1:
x_reduce = torch.tensor(x).cuda()
dist.all_reduce(x_reduce)
x_reduce /= world_size
return x_reduce.item()
else:
return x
# utils
@torch.no_grad()
def concat_all_gather(tensor):
"""
Performs all_gather operation on the provided tensors.
*** Warning ***: torch.distributed.all_gather has no gradient.
"""
tensors_gather = [
torch.ones_like(tensor) for _ in range(torch.distributed.get_world_size())
]
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
output = torch.cat(tensors_gather, dim=0)
return output
def merge_vmae_to_avmae(avmae_state_dict, vmae_ckpt):
# keys_to_copy=['pos_embed','patch_embed']
# replaced=0
vmae_ckpt["cls_token"] = vmae_ckpt["cls_token_v"]
vmae_ckpt["mask_token"] = vmae_ckpt["mask_token_v"]
# pos_emb % not trainable, use default
pos_embed_v = vmae_ckpt["pos_embed_v"] # 1,589,768
pos_embed = pos_embed_v[:, 1:, :] # 1,588,768
cls_embed = pos_embed_v[:, 0, :].unsqueeze(1)
pos_embed = pos_embed.reshape(1, 2, 14, 14, 768).sum(dim=1) # 1, 14, 14, 768
print("Position interpolate from 14,14 to 64,8")
pos_embed = pos_embed.permute(0, 3, 1, 2) # 1, 14,14,768 -> 1,768,14,14
pos_embed = torch.nn.functional.interpolate(
pos_embed, size=(64, 8), mode="bicubic", align_corners=False
)
pos_embed = pos_embed.permute(0, 2, 3, 1).flatten(
1, 2
) # 1, 14, 14, 768 => 1, 196,768
pos_embed = torch.cat((cls_embed, pos_embed), dim=1)
assert vmae_ckpt["pos_embed"].shape == pos_embed.shape
vmae_ckpt["pos_embed"] = pos_embed
# patch_emb
# aggregate 3 channels in video-rgb ckpt to 1 channel for audio
v_weight = vmae_ckpt["patch_embed_v.proj.weight"] # 768,3,2,16,16
new_proj_weight = torch.nn.Parameter(v_weight.sum(dim=2).sum(dim=1).unsqueeze(1))
assert new_proj_weight.shape == vmae_ckpt["patch_embed.proj.weight"].shape
vmae_ckpt["patch_embed.proj.weight"] = new_proj_weight
vmae_ckpt["patch_embed.proj.bias"] = vmae_ckpt["patch_embed_v.proj.bias"]
# hack
vmae_ckpt["norm.weight"] = vmae_ckpt["norm_v.weight"]
vmae_ckpt["norm.bias"] = vmae_ckpt["norm_v.bias"]
# replace transformer encoder
for k, v in vmae_ckpt.items():
if k.startswith("blocks."):
kk = k.replace("blocks.", "blocks_v.")
vmae_ckpt[k] = vmae_ckpt[kk]
elif k.startswith("blocks_v."):
pass
else:
print(k)
pass
print(k)