jadechoghari's picture
add model
9b9e0ee verified
raw
history blame
21.2 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# DeiT: https://github.com/facebookresearch/deit
# --------------------------------------------------------
from functools import partial
from json import encoder
import torch
import torch.nn as nn
from timm.models.vision_transformer import Block
from qa_mdt.audioldm_train.modules.audiomae.util.pos_embed import (
get_2d_sincos_pos_embed,
get_2d_sincos_pos_embed_flexible,
get_1d_sincos_pos_embed_from_grid,
)
from qa_mdt.audioldm_train.modules.audiomae.util.patch_embed import (
PatchEmbed_new,
PatchEmbed_org,
)
class MaskedAutoencoderViT(nn.Module):
"""Masked Autoencoder with VisionTransformer backbone"""
def __init__(
self,
img_size=224,
patch_size=16,
stride=10,
in_chans=3,
embed_dim=1024,
depth=24,
num_heads=16,
decoder_embed_dim=512,
decoder_depth=8,
decoder_num_heads=16,
mlp_ratio=4.0,
norm_layer=nn.LayerNorm,
norm_pix_loss=False,
audio_exp=False,
alpha=0.0,
temperature=0.2,
mode=0,
contextual_depth=8,
use_custom_patch=False,
split_pos=False,
pos_trainable=False,
use_nce=False,
beta=4.0,
decoder_mode=0,
mask_t_prob=0.6,
mask_f_prob=0.5,
mask_2d=False,
epoch=0,
no_shift=False,
):
super().__init__()
self.audio_exp = audio_exp
self.embed_dim = embed_dim
self.decoder_embed_dim = decoder_embed_dim
# --------------------------------------------------------------------------
# MAE encoder specifics
if use_custom_patch:
print(
f"Use custom patch_emb with patch size: {patch_size}, stride: {stride}"
)
self.patch_embed = PatchEmbed_new(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
stride=stride,
)
else:
self.patch_embed = PatchEmbed_org(img_size, patch_size, in_chans, embed_dim)
self.use_custom_patch = use_custom_patch
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
# self.split_pos = split_pos # not useful
self.pos_embed = nn.Parameter(
torch.zeros(1, num_patches + 1, embed_dim), requires_grad=pos_trainable
) # fixed sin-cos embedding
self.encoder_depth = depth
self.contextual_depth = contextual_depth
self.blocks = nn.ModuleList(
[
Block(
embed_dim,
num_heads,
mlp_ratio,
qkv_bias=True,
norm_layer=norm_layer,
) # qk_scale=None
for i in range(depth)
]
)
self.norm = norm_layer(embed_dim)
# --------------------------------------------------------------------------
# MAE decoder specifics
self.decoder_embed = nn.Linear(embed_dim, decoder_embed_dim, bias=True)
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
self.decoder_pos_embed = nn.Parameter(
torch.zeros(1, num_patches + 1, decoder_embed_dim),
requires_grad=pos_trainable,
) # fixed sin-cos embedding
self.no_shift = no_shift
self.decoder_mode = decoder_mode
if (
self.use_custom_patch
): # overlapped patches as in AST. Similar performance yet compute heavy
window_size = (6, 6)
feat_size = (102, 12)
else:
window_size = (4, 4)
feat_size = (64, 8)
if self.decoder_mode == 1:
decoder_modules = []
for index in range(16):
if self.no_shift:
shift_size = (0, 0)
else:
if (index % 2) == 0:
shift_size = (0, 0)
else:
shift_size = (2, 0)
# shift_size = tuple([0 if ((index % 2) == 0) else w // 2 for w in window_size])
decoder_modules.append(
SwinTransformerBlock(
dim=decoder_embed_dim,
num_heads=16,
feat_size=feat_size,
window_size=window_size,
shift_size=shift_size,
mlp_ratio=mlp_ratio,
drop=0.0,
drop_attn=0.0,
drop_path=0.0,
extra_norm=False,
sequential_attn=False,
norm_layer=norm_layer, # nn.LayerNorm,
)
)
self.decoder_blocks = nn.ModuleList(decoder_modules)
else:
# Transfomer
self.decoder_blocks = nn.ModuleList(
[
Block(
decoder_embed_dim,
decoder_num_heads,
mlp_ratio,
qkv_bias=True,
norm_layer=norm_layer,
) # qk_scale=None,
for i in range(decoder_depth)
]
)
self.decoder_norm = norm_layer(decoder_embed_dim)
self.decoder_pred = nn.Linear(
decoder_embed_dim, patch_size**2 * in_chans, bias=True
) # decoder to patch
# --------------------------------------------------------------------------
self.norm_pix_loss = norm_pix_loss
self.patch_size = patch_size
self.stride = stride
# audio exps
self.alpha = alpha
self.T = temperature
self.mode = mode
self.use_nce = use_nce
self.beta = beta
self.log_softmax = nn.LogSoftmax(dim=-1)
self.mask_t_prob = mask_t_prob
self.mask_f_prob = mask_f_prob
self.mask_2d = mask_2d
self.epoch = epoch
self.initialize_weights()
def initialize_weights(self):
# initialization
# initialize (and freeze) pos_embed by sin-cos embedding
if self.audio_exp:
pos_embed = get_2d_sincos_pos_embed_flexible(
self.pos_embed.shape[-1], self.patch_embed.patch_hw, cls_token=True
)
else:
pos_embed = get_2d_sincos_pos_embed(
self.pos_embed.shape[-1],
int(self.patch_embed.num_patches**0.5),
cls_token=True,
)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
if self.audio_exp:
decoder_pos_embed = get_2d_sincos_pos_embed_flexible(
self.decoder_pos_embed.shape[-1],
self.patch_embed.patch_hw,
cls_token=True,
)
else:
decoder_pos_embed = get_2d_sincos_pos_embed(
self.decoder_pos_embed.shape[-1],
int(self.patch_embed.num_patches**0.5),
cls_token=True,
)
self.decoder_pos_embed.data.copy_(
torch.from_numpy(decoder_pos_embed).float().unsqueeze(0)
)
# initialize patch_embed like nn.Linear (instead of nn.Conv2d)
w = self.patch_embed.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
torch.nn.init.normal_(self.cls_token, std=0.02)
torch.nn.init.normal_(self.mask_token, std=0.02)
# initialize nn.Linear and nn.LayerNorm
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def patchify(self, imgs):
"""
imgs: (N, 3, H, W)
x: (N, L, patch_size**2 *3)
L = (H/p)*(W/p)
"""
p = self.patch_embed.patch_size[0]
# assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % p == 0
if self.audio_exp:
if self.use_custom_patch: # overlapped patch
h, w = self.patch_embed.patch_hw
# todo: fixed h/w patch size and stride size. Make hw custom in the future
x = imgs.unfold(2, self.patch_size, self.stride).unfold(
3, self.patch_size, self.stride
) # n,1,H,W -> n,1,h,w,p,p
x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 1))
# x = imgs.reshape(shape=(imgs.shape[0], 1, h, p, w, p))
# x = torch.einsum('nchpwq->nhwpqc', x)
# x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 1))
else:
h = imgs.shape[2] // p
w = imgs.shape[3] // p
# h,w = self.patch_embed.patch_hw
x = imgs.reshape(shape=(imgs.shape[0], 1, h, p, w, p))
x = torch.einsum("nchpwq->nhwpqc", x)
x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 1))
else:
h = w = imgs.shape[2] // p
x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p))
x = torch.einsum("nchpwq->nhwpqc", x)
x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 3))
return x
def unpatchify(self, x):
"""
x: (N, L, patch_size**2 *3)
specs: (N, 1, H, W)
"""
p = self.patch_embed.patch_size[0]
h = 1024 // p
w = 128 // p
x = x.reshape(shape=(x.shape[0], h, w, p, p, 1))
x = torch.einsum("nhwpqc->nchpwq", x)
specs = x.reshape(shape=(x.shape[0], 1, h * p, w * p))
return specs
def random_masking(self, x, mask_ratio):
"""
Perform per-sample random masking by per-sample shuffling.
Per-sample shuffling is done by argsort random noise.
x: [N, L, D], sequence
"""
N, L, D = x.shape # batch, length, dim
len_keep = int(L * (1 - mask_ratio))
noise = torch.rand(N, L, device=x.device) # noise in [0, 1]
# sort noise for each sample
ids_shuffle = torch.argsort(
noise, dim=1
) # ascend: small is keep, large is remove
ids_restore = torch.argsort(ids_shuffle, dim=1)
# keep the first subset
ids_keep = ids_shuffle[:, :len_keep]
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
# generate the binary mask: 0 is keep, 1 is remove
mask = torch.ones([N, L], device=x.device)
mask[:, :len_keep] = 0
# unshuffle to get the binary mask
mask = torch.gather(mask, dim=1, index=ids_restore)
return x_masked, mask, ids_restore
def random_masking_2d(self, x, mask_t_prob, mask_f_prob):
"""
2D: Spectrogram (msking t and f under mask_t_prob and mask_f_prob)
Perform per-sample random masking by per-sample shuffling.
Per-sample shuffling is done by argsort random noise.
x: [N, L, D], sequence
"""
N, L, D = x.shape # batch, length, dim
if self.use_custom_patch: # overlapped patch
T = 101
F = 12
else:
T = 64
F = 8
# x = x.reshape(N, T, F, D)
len_keep_t = int(T * (1 - mask_t_prob))
len_keep_f = int(F * (1 - mask_f_prob))
# noise for mask in time
noise_t = torch.rand(N, T, device=x.device) # noise in [0, 1]
# sort noise for each sample aling time
ids_shuffle_t = torch.argsort(
noise_t, dim=1
) # ascend: small is keep, large is remove
ids_restore_t = torch.argsort(ids_shuffle_t, dim=1)
ids_keep_t = ids_shuffle_t[:, :len_keep_t]
# noise mask in freq
noise_f = torch.rand(N, F, device=x.device) # noise in [0, 1]
ids_shuffle_f = torch.argsort(
noise_f, dim=1
) # ascend: small is keep, large is remove
ids_restore_f = torch.argsort(ids_shuffle_f, dim=1)
ids_keep_f = ids_shuffle_f[:, :len_keep_f] #
# generate the binary mask: 0 is keep, 1 is remove
# mask in freq
mask_f = torch.ones(N, F, device=x.device)
mask_f[:, :len_keep_f] = 0
mask_f = (
torch.gather(mask_f, dim=1, index=ids_restore_f)
.unsqueeze(1)
.repeat(1, T, 1)
) # N,T,F
# mask in time
mask_t = torch.ones(N, T, device=x.device)
mask_t[:, :len_keep_t] = 0
mask_t = (
torch.gather(mask_t, dim=1, index=ids_restore_t)
.unsqueeze(1)
.repeat(1, F, 1)
.permute(0, 2, 1)
) # N,T,F
mask = 1 - (1 - mask_t) * (1 - mask_f) # N, T, F
# get masked x
id2res = torch.Tensor(list(range(N * T * F))).reshape(N, T, F).to(x.device)
id2res = id2res + 999 * mask # add a large value for masked elements
id2res2 = torch.argsort(id2res.flatten(start_dim=1))
ids_keep = id2res2.flatten(start_dim=1)[:, : len_keep_f * len_keep_t]
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
ids_restore = torch.argsort(id2res2.flatten(start_dim=1))
mask = mask.flatten(start_dim=1)
return x_masked, mask, ids_restore
def forward_encoder(self, x, mask_ratio, mask_2d=False):
# embed patches
x = self.patch_embed(x)
# add pos embed w/o cls token
x = x + self.pos_embed[:, 1:, :]
# masking: length -> length * mask_ratio
if mask_2d:
x, mask, ids_restore = self.random_masking_2d(
x, mask_t_prob=self.mask_t_prob, mask_f_prob=self.mask_f_prob
)
else:
x, mask, ids_restore = self.random_masking(x, mask_ratio)
# append cls token
cls_token = self.cls_token + self.pos_embed[:, :1, :]
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# apply Transformer blocks
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
return x, mask, ids_restore, None
def forward_encoder_no_random_mask_no_average(self, x):
# embed patches
x = self.patch_embed(x)
# add pos embed w/o cls token
x = x + self.pos_embed[:, 1:, :]
# masking: length -> length * mask_ratio
# if mask_2d:
# x, mask, ids_restore = self.random_masking_2d(x, mask_t_prob=self.mask_t_prob, mask_f_prob=self.mask_f_prob)
# else:
# x, mask, ids_restore = self.random_masking(x, mask_ratio)
# append cls token
cls_token = self.cls_token + self.pos_embed[:, :1, :]
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# apply Transformer blocks
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
return x
def forward_encoder_no_mask(self, x):
# embed patches
x = self.patch_embed(x)
# add pos embed w/o cls token
x = x + self.pos_embed[:, 1:, :]
# masking: length -> length * mask_ratio
# x, mask, ids_restore = self.random_masking(x, mask_ratio)
# append cls token
cls_token = self.cls_token + self.pos_embed[:, :1, :]
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# apply Transformer blocks
contextual_embs = []
for n, blk in enumerate(self.blocks):
x = blk(x)
if n > self.contextual_depth:
contextual_embs.append(self.norm(x))
# x = self.norm(x)
contextual_emb = torch.stack(contextual_embs, dim=0).mean(dim=0)
return contextual_emb
def forward_decoder(self, x, ids_restore):
# embed tokens
x = self.decoder_embed(x)
# append mask tokens to sequence
mask_tokens = self.mask_token.repeat(
x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1
)
x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1) # no cls token
x_ = torch.gather(
x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2])
) # unshuffle
x = torch.cat([x[:, :1, :], x_], dim=1) # append cls token
# add pos embed
x = x + self.decoder_pos_embed
if self.decoder_mode != 0:
B, L, D = x.shape
x = x[:, 1:, :]
if self.use_custom_patch:
x = x.reshape(B, 101, 12, D)
x = torch.cat([x, x[:, -1, :].unsqueeze(1)], dim=1) # hack
x = x.reshape(B, 1224, D)
if self.decoder_mode > 3: # mvit
x = self.decoder_blocks(x)
else:
# apply Transformer blocks
for blk in self.decoder_blocks:
x = blk(x)
x = self.decoder_norm(x)
# predictor projection
pred = self.decoder_pred(x)
# remove cls token
if self.decoder_mode != 0:
if self.use_custom_patch:
pred = pred.reshape(B, 102, 12, 256)
pred = pred[:, :101, :, :]
pred = pred.reshape(B, 1212, 256)
else:
pred = pred
else:
pred = pred[:, 1:, :]
return pred, None, None # emb, emb_pixel
def forward_loss(self, imgs, pred, mask, norm_pix_loss=False):
"""
imgs: [N, 3, H, W]
pred: [N, L, p*p*3]
mask: [N, L], 0 is keep, 1 is remove,
"""
target = self.patchify(imgs)
if norm_pix_loss:
mean = target.mean(dim=-1, keepdim=True)
var = target.var(dim=-1, keepdim=True)
target = (target - mean) / (var + 1.0e-6) ** 0.5
loss = (pred - target) ** 2
loss = loss.mean(dim=-1) # [N, L], mean loss per patch
loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches
return loss
def forward(self, imgs, mask_ratio=0.8):
emb_enc, mask, ids_restore, _ = self.forward_encoder(
imgs, mask_ratio, mask_2d=self.mask_2d
)
pred, _, _ = self.forward_decoder(emb_enc, ids_restore) # [N, L, p*p*3]
loss_recon = self.forward_loss(
imgs, pred, mask, norm_pix_loss=self.norm_pix_loss
)
loss_contrastive = torch.FloatTensor([0.0]).cuda()
return loss_recon, pred, mask, loss_contrastive
def mae_vit_small_patch16_dec512d8b(**kwargs):
model = MaskedAutoencoderViT(
patch_size=16,
embed_dim=384,
depth=12,
num_heads=6,
decoder_embed_dim=512,
decoder_num_heads=16,
mlp_ratio=4,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs,
)
return model
def mae_vit_base_patch16_dec512d8b(**kwargs):
model = MaskedAutoencoderViT(
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
decoder_embed_dim=512,
decoder_num_heads=16,
mlp_ratio=4,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs,
)
return model
def mae_vit_large_patch16_dec512d8b(**kwargs):
model = MaskedAutoencoderViT(
patch_size=16,
embed_dim=1024,
depth=24,
num_heads=16,
decoder_embed_dim=512,
decoder_num_heads=16,
mlp_ratio=4,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs,
)
return model
def mae_vit_huge_patch14_dec512d8b(**kwargs):
model = MaskedAutoencoderViT(
patch_size=14,
embed_dim=1280,
depth=32,
num_heads=16,
decoder_embed_dim=512,
decoder_num_heads=16,
mlp_ratio=4,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs,
)
return model
# set recommended archs
mae_vit_base_patch16 = mae_vit_base_patch16_dec512d8b # decoder: 512 dim, 8 blocks
mae_vit_large_patch16 = mae_vit_large_patch16_dec512d8b # decoder: 512 dim, 8 blocks
mae_vit_huge_patch14 = mae_vit_huge_patch14_dec512d8b # decoder: 512 dim, 8 blocks
mae_vit_small_patch16 = mae_vit_small_patch16_dec512d8b # decoder: 512 dim, 8 blocks