|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import torch |
|
import torch.nn as nn |
|
from timm.models.vision_transformer import Mlp, Attention as Attention_ |
|
from einops import rearrange, repeat |
|
import xformers.ops |
|
|
|
from .utils import add_decomposed_rel_pos |
|
|
|
|
|
def modulate(x, shift, scale): |
|
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) |
|
|
|
|
|
def t2i_modulate(x, shift, scale): |
|
return x * (1 + scale) + shift |
|
|
|
|
|
class MultiHeadCrossAttention(nn.Module): |
|
def __init__(self, d_model, num_heads, attn_drop=0., proj_drop=0., **block_kwargs): |
|
super(MultiHeadCrossAttention, self).__init__() |
|
assert d_model % num_heads == 0, "d_model must be divisible by num_heads" |
|
|
|
self.d_model = d_model |
|
self.num_heads = num_heads |
|
self.head_dim = d_model // num_heads |
|
|
|
self.q_linear = nn.Linear(d_model, d_model) |
|
self.kv_linear = nn.Linear(d_model, d_model*2) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(d_model, d_model) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x, cond, mask=None): |
|
|
|
B, N, C = x.shape |
|
|
|
q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim) |
|
|
|
|
|
kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim) |
|
k, v = kv.unbind(2) |
|
attn_bias = None |
|
assert mask is not None |
|
|
|
|
|
attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask) |
|
|
|
|
|
|
|
|
|
|
|
|
|
x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) |
|
|
|
x = x.view(B, -1, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return x |
|
|
|
|
|
class WindowAttention(Attention_): |
|
"""Multi-head Attention block with relative position embeddings.""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
num_heads=8, |
|
qkv_bias=True, |
|
use_rel_pos=False, |
|
rel_pos_zero_init=True, |
|
input_size=None, |
|
**block_kwargs, |
|
): |
|
""" |
|
Args: |
|
dim (int): Number of input channels. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool: If True, add a learnable bias to query, key, value. |
|
rel_pos (bool): If True, add relative positional embeddings to the attention map. |
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. |
|
input_size (int or None): Input resolution for calculating the relative positional |
|
parameter size. |
|
""" |
|
super().__init__(dim, num_heads=num_heads, qkv_bias=qkv_bias, **block_kwargs) |
|
|
|
self.use_rel_pos = use_rel_pos |
|
if self.use_rel_pos: |
|
|
|
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, self.head_dim)) |
|
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, self.head_dim)) |
|
|
|
if not rel_pos_zero_init: |
|
nn.init.trunc_normal_(self.rel_pos_h, std=0.02) |
|
nn.init.trunc_normal_(self.rel_pos_w, std=0.02) |
|
|
|
def forward(self, x, mask=None): |
|
B, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) |
|
q, k, v = qkv.unbind(2) |
|
if use_fp32_attention := getattr(self, 'fp32_attention', False): |
|
q, k, v = q.float(), k.float(), v.float() |
|
|
|
attn_bias = None |
|
if mask is not None: |
|
attn_bias = torch.zeros([B * self.num_heads, q.shape[1], k.shape[1]], dtype=q.dtype, device=q.device) |
|
attn_bias.masked_fill_(mask.squeeze(1).repeat(self.num_heads, 1, 1) == 0, float('-inf')) |
|
|
|
|
|
x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) |
|
|
|
x = x.view(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class Attention(Attention_): |
|
def forward(self, x): |
|
B, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv.unbind(0) |
|
use_fp32_attention = getattr(self, 'fp32_attention', False) |
|
if use_fp32_attention: |
|
q, k = q.float(), k.float() |
|
with torch.cuda.amp.autocast(enabled=not use_fp32_attention): |
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn.softmax(dim=-1) |
|
|
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class FinalLayer(nn.Module): |
|
""" |
|
The final layer of PixArt. |
|
""" |
|
|
|
def __init__(self, hidden_size, patch_size, out_channels): |
|
super().__init__() |
|
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) |
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, 2 * hidden_size, bias=True) |
|
) |
|
|
|
def forward(self, x, c): |
|
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) |
|
x = modulate(self.norm_final(x), shift, scale) |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
class T2IFinalLayer(nn.Module): |
|
""" |
|
The final layer of PixArt. |
|
""" |
|
|
|
def __init__(self, hidden_size, patch_size, out_channels): |
|
super().__init__() |
|
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.linear = nn.Linear(hidden_size, patch_size[0] * patch_size[1] * out_channels, bias=True) |
|
self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size ** 0.5) |
|
self.out_channels = out_channels |
|
|
|
def forward(self, x, t): |
|
shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2, dim=1) |
|
x = t2i_modulate(self.norm_final(x), shift, scale) |
|
x = self.linear(x) |
|
return x |
|
|
|
class MaskFinalLayer(nn.Module): |
|
""" |
|
The final layer of PixArt. |
|
""" |
|
|
|
def __init__(self, final_hidden_size, c_emb_size, patch_size, out_channels): |
|
super().__init__() |
|
self.norm_final = nn.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.linear = nn.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True) |
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear(c_emb_size, 2 * final_hidden_size, bias=True) |
|
) |
|
def forward(self, x, t): |
|
shift, scale = self.adaLN_modulation(t).chunk(2, dim=1) |
|
x = modulate(self.norm_final(x), shift, scale) |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
class DecoderLayer(nn.Module): |
|
""" |
|
The final layer of PixArt. |
|
""" |
|
|
|
def __init__(self, hidden_size, decoder_hidden_size): |
|
super().__init__() |
|
self.norm_decoder = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.linear = nn.Linear(hidden_size, decoder_hidden_size, bias=True) |
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, 2 * hidden_size, bias=True) |
|
) |
|
def forward(self, x, t): |
|
shift, scale = self.adaLN_modulation(t).chunk(2, dim=1) |
|
x = modulate(self.norm_decoder(x), shift, scale) |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class TimestepEmbedder(nn.Module): |
|
""" |
|
Embeds scalar timesteps into vector representations. |
|
""" |
|
|
|
def __init__(self, hidden_size, frequency_embedding_size=256): |
|
super().__init__() |
|
self.mlp = nn.Sequential( |
|
nn.Linear(frequency_embedding_size, hidden_size, bias=True), |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, hidden_size, bias=True), |
|
) |
|
self.frequency_embedding_size = frequency_embedding_size |
|
|
|
@staticmethod |
|
def timestep_embedding(t, dim, max_period=10000): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
:param t: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an (N, D) Tensor of positional embeddings. |
|
""" |
|
|
|
half = dim // 2 |
|
freqs = torch.exp( |
|
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half) |
|
args = t[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) |
|
return embedding |
|
|
|
def forward(self, t): |
|
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(self.dtype) |
|
return self.mlp(t_freq) |
|
|
|
@property |
|
def dtype(self): |
|
|
|
return next(self.parameters()).dtype |
|
|
|
|
|
class SizeEmbedder(TimestepEmbedder): |
|
""" |
|
Embeds scalar timesteps into vector representations. |
|
""" |
|
|
|
def __init__(self, hidden_size, frequency_embedding_size=256): |
|
super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size) |
|
self.mlp = nn.Sequential( |
|
nn.Linear(frequency_embedding_size, hidden_size, bias=True), |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, hidden_size, bias=True), |
|
) |
|
self.frequency_embedding_size = frequency_embedding_size |
|
self.outdim = hidden_size |
|
|
|
def forward(self, s, bs): |
|
if s.ndim == 1: |
|
s = s[:, None] |
|
assert s.ndim == 2 |
|
if s.shape[0] != bs: |
|
s = s.repeat(bs//s.shape[0], 1) |
|
assert s.shape[0] == bs |
|
b, dims = s.shape[0], s.shape[1] |
|
s = rearrange(s, "b d -> (b d)") |
|
s_freq = self.timestep_embedding(s, self.frequency_embedding_size).to(self.dtype) |
|
s_emb = self.mlp(s_freq) |
|
s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim) |
|
return s_emb |
|
|
|
@property |
|
def dtype(self): |
|
|
|
return next(self.parameters()).dtype |
|
|
|
|
|
class LabelEmbedder(nn.Module): |
|
""" |
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. |
|
""" |
|
|
|
def __init__(self, num_classes, hidden_size, dropout_prob): |
|
super().__init__() |
|
use_cfg_embedding = dropout_prob > 0 |
|
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) |
|
self.num_classes = num_classes |
|
self.dropout_prob = dropout_prob |
|
|
|
def token_drop(self, labels, force_drop_ids=None): |
|
""" |
|
Drops labels to enable classifier-free guidance. |
|
""" |
|
if force_drop_ids is None: |
|
drop_ids = torch.rand(labels.shape[0]).cuda() < self.dropout_prob |
|
else: |
|
drop_ids = force_drop_ids == 1 |
|
labels = torch.where(drop_ids, self.num_classes, labels) |
|
return labels |
|
|
|
def forward(self, labels, train, force_drop_ids=None): |
|
use_dropout = self.dropout_prob > 0 |
|
if (train and use_dropout) or (force_drop_ids is not None): |
|
labels = self.token_drop(labels, force_drop_ids) |
|
return self.embedding_table(labels) |
|
|
|
|
|
class CaptionEmbedder(nn.Module): |
|
""" |
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. |
|
""" |
|
|
|
def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate='tanh'), token_num=120): |
|
super().__init__() |
|
self.y_proj = Mlp(in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, drop=0) |
|
self.register_buffer("y_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels ** 0.5)) |
|
self.uncond_prob = uncond_prob |
|
|
|
def token_drop(self, caption, force_drop_ids=None): |
|
""" |
|
Drops labels to enable classifier-free guidance. |
|
""" |
|
if force_drop_ids is None: |
|
drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob |
|
else: |
|
drop_ids = force_drop_ids == 1 |
|
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) |
|
return caption |
|
|
|
def forward(self, caption, train, force_drop_ids=None): |
|
if train: |
|
assert caption.shape[2:] == self.y_embedding.shape |
|
use_dropout = self.uncond_prob > 0 |
|
if (train and use_dropout) or (force_drop_ids is not None): |
|
caption = self.token_drop(caption, force_drop_ids) |
|
caption = self.y_proj(caption) |
|
return caption |
|
|
|
|
|
class CaptionEmbedderDoubleBr(nn.Module): |
|
""" |
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. |
|
""" |
|
|
|
def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate='tanh'), token_num=120): |
|
super().__init__() |
|
self.proj = Mlp(in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, drop=0) |
|
self.embedding = nn.Parameter(torch.randn(1, in_channels) / 10 ** 0.5) |
|
self.y_embedding = nn.Parameter(torch.randn(token_num, in_channels) / 10 ** 0.5) |
|
self.uncond_prob = uncond_prob |
|
|
|
def token_drop(self, global_caption, caption, force_drop_ids=None): |
|
""" |
|
Drops labels to enable classifier-free guidance. |
|
""" |
|
if force_drop_ids is None: |
|
drop_ids = torch.rand(global_caption.shape[0]).cuda() < self.uncond_prob |
|
else: |
|
drop_ids = force_drop_ids == 1 |
|
global_caption = torch.where(drop_ids[:, None], self.embedding, global_caption) |
|
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) |
|
return global_caption, caption |
|
|
|
def forward(self, caption, train, force_drop_ids=None): |
|
assert caption.shape[2: ] == self.y_embedding.shape |
|
global_caption = caption.mean(dim=2).squeeze() |
|
use_dropout = self.uncond_prob > 0 |
|
if (train and use_dropout) or (force_drop_ids is not None): |
|
global_caption, caption = self.token_drop(global_caption, caption, force_drop_ids) |
|
y_embed = self.proj(global_caption) |
|
return y_embed, caption |
|
|