|
import json |
|
import logging |
|
import math |
|
import os |
|
import time |
|
from contextlib import suppress |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
try: |
|
import wandb |
|
except ImportError: |
|
wandb = None |
|
|
|
from open_clip import ClipLoss, gather_features |
|
from .distributed import is_master |
|
from .zero_shot import zero_shot_eval |
|
|
|
|
|
class AverageMeter(object): |
|
"""Computes and stores the average and current value""" |
|
|
|
def __init__(self): |
|
self.reset() |
|
|
|
def reset(self): |
|
self.val = 0 |
|
self.avg = 0 |
|
self.sum = 0 |
|
self.count = 0 |
|
|
|
def update(self, val, n=1): |
|
self.val = val |
|
self.sum += val * n |
|
self.count += n |
|
self.avg = self.sum / self.count |
|
|
|
|
|
def unwrap_model(model): |
|
if hasattr(model, "module"): |
|
return model.module |
|
else: |
|
return model |
|
|
|
|
|
def train_one_epoch( |
|
model, data, epoch, optimizer, scaler, scheduler, args, tb_writer=None |
|
): |
|
device = torch.device(args.device) |
|
autocast = torch.cuda.amp.autocast if args.precision == "amp" else suppress |
|
model.train() |
|
loss = ClipLoss( |
|
local_loss=args.local_loss, |
|
gather_with_grad=args.gather_with_grad, |
|
cache_labels=True, |
|
rank=args.rank, |
|
world_size=args.world_size, |
|
use_horovod=args.horovod, |
|
mlp_loss=args.clap_mlploss, |
|
weight_loss_kappa=args.kappa, |
|
) |
|
|
|
dataloader, sampler = data["train"].dataloader, data["train"].sampler |
|
if args.distributed and sampler is not None: |
|
sampler.set_epoch(epoch) |
|
num_batches_per_epoch = dataloader.num_batches |
|
sample_digits = math.ceil(math.log(dataloader.num_samples + 1, 10)) |
|
|
|
|
|
if args.dataset_type == "toy": |
|
dataloader.dataset.generate_queue() |
|
|
|
loss_m = AverageMeter() |
|
batch_time_m = AverageMeter() |
|
data_time_m = AverageMeter() |
|
end = time.time() |
|
|
|
for i, batch in enumerate(dataloader): |
|
|
|
step = num_batches_per_epoch * epoch + i |
|
if isinstance(scheduler, dict): |
|
for s in scheduler.values(): |
|
s(step) |
|
else: |
|
scheduler(step) |
|
audios = batch |
|
texts = batch["text"] |
|
|
|
|
|
|
|
data_time_m.update(time.time() - end) |
|
if isinstance(optimizer, dict): |
|
for o_ in optimizer.values(): |
|
o_.zero_grad() |
|
else: |
|
optimizer.zero_grad() |
|
|
|
with autocast(): |
|
( |
|
audio_features, |
|
text_features, |
|
audio_features_mlp, |
|
text_features_mlp, |
|
logit_scale_a, |
|
logit_scale_t, |
|
) = model(audios, texts, device) |
|
|
|
if args.clap_mlploss: |
|
total_loss = loss( |
|
audio_features=audio_features, |
|
text_features=text_features, |
|
logit_scale_a=logit_scale_a, |
|
logit_scale_t=logit_scale_t, |
|
audio_features_mlp=audio_features_mlp, |
|
text_features_mlp=text_features_mlp, |
|
) |
|
else: |
|
total_loss = loss( |
|
audio_features=audio_features, |
|
text_features=text_features, |
|
logit_scale_a=logit_scale_a, |
|
) |
|
if isinstance(optimizer, dict): |
|
if scaler is not None: |
|
scaler.scale(total_loss).backward() |
|
for o_ in optimizer.values(): |
|
if args.horovod: |
|
o_.synchronize() |
|
scaler.unscale_(o_) |
|
with o_.skip_synchronize(): |
|
scaler.step(o_) |
|
else: |
|
scaler.step(o_) |
|
scaler.update() |
|
else: |
|
total_loss.backward() |
|
for o_ in optimizer.values(): |
|
o_.step() |
|
else: |
|
if scaler is not None: |
|
scaler.scale(total_loss).backward() |
|
if args.horovod: |
|
optimizer.synchronize() |
|
scaler.unscale_(optimizer) |
|
with optimizer.skip_synchronize(): |
|
scaler.step(optimizer) |
|
else: |
|
scaler.step(optimizer) |
|
scaler.update() |
|
else: |
|
total_loss.backward() |
|
optimizer.step() |
|
|
|
|
|
with torch.no_grad(): |
|
unwrap_model(model).logit_scale_a.clamp_(0, math.log(100)) |
|
if args.clap_mlploss: |
|
unwrap_model(model).logit_scale_t.clamp_(0, math.log(100)) |
|
|
|
batch_time_m.update(time.time() - end) |
|
end = time.time() |
|
batch_count = i + 1 |
|
if is_master(args) and (i % 100 == 0 or batch_count == num_batches_per_epoch): |
|
if isinstance(audios, dict): |
|
batch_size = len(audios["waveform"]) |
|
else: |
|
batch_size = len(audios) |
|
num_samples = batch_count * batch_size * args.world_size |
|
samples_per_epoch = dataloader.num_samples |
|
percent_complete = 100.0 * batch_count / num_batches_per_epoch |
|
|
|
|
|
loss_m.update(total_loss.item(), batch_size) |
|
logit_scale_scalar_a = logit_scale_a.item() |
|
logit_scale_scalar_t = logit_scale_t.item() |
|
if isinstance(optimizer, dict): |
|
if args.clap_mlploss: |
|
logging.info( |
|
f"Train Epoch: {epoch} [{num_samples:>{sample_digits}}/{samples_per_epoch} ({percent_complete:.0f}%)] " |
|
f"Loss: {loss_m.val:#.5g} ({loss_m.avg:#.4g}) " |
|
f"Data (t): {data_time_m.avg:.3f} " |
|
f"Batch (t): {batch_time_m.avg:.3f} " |
|
f"LR: {[o_.param_groups[0]['lr'] for o_ in optimizer.values()]} " |
|
f"Logit Scale Audio: {logit_scale_scalar_a:.3f}" |
|
f"Logit Scale Text: {logit_scale_scalar_t:.3f}" |
|
) |
|
log_data = { |
|
"loss": loss_m.val, |
|
"data_time": data_time_m.val, |
|
"batch_time": batch_time_m.val, |
|
"scale_audio": logit_scale_scalar_a, |
|
"scale_text": logit_scale_scalar_t, |
|
"lr": [o_.param_groups[0]["lr"] for o_ in optimizer.values()], |
|
} |
|
else: |
|
logging.info( |
|
f"Train Epoch: {epoch} [{num_samples:>{sample_digits}}/{samples_per_epoch} ({percent_complete:.0f}%)] " |
|
f"Loss: {loss_m.val:#.5g} ({loss_m.avg:#.4g}) " |
|
f"Data (t): {data_time_m.avg:.3f} " |
|
f"Batch (t): {batch_time_m.avg:.3f} " |
|
f"LR: {[o_.param_groups[0]['lr'] for o_ in optimizer.values()]} " |
|
f"Logit Scale Audio: {logit_scale_scalar_a:.3f}" |
|
) |
|
log_data = { |
|
"loss": loss_m.val, |
|
"data_time": data_time_m.val, |
|
"batch_time": batch_time_m.val, |
|
"scale_audio": logit_scale_scalar_a, |
|
"lr": [o_.param_groups[0]["lr"] for o_ in optimizer.values()], |
|
} |
|
|
|
else: |
|
if args.clap_mlploss: |
|
logging.info( |
|
f"Train Epoch: {epoch} [{num_samples:>{sample_digits}}/{samples_per_epoch} ({percent_complete:.0f}%)] " |
|
f"Loss: {loss_m.val:#.5g} ({loss_m.avg:#.4g}) " |
|
f"Data (t): {data_time_m.avg:.3f} " |
|
f"Batch (t): {batch_time_m.avg:.3f} " |
|
f"LR: {optimizer.param_groups[0]['lr']:5f} " |
|
f"Logit Scale Audio: {logit_scale_scalar_a:.3f}" |
|
f"Logit Scale Text: {logit_scale_scalar_t:.3f}" |
|
) |
|
|
|
|
|
log_data = { |
|
"loss": loss_m.val, |
|
"data_time": data_time_m.val, |
|
"batch_time": batch_time_m.val, |
|
"scale_audio": logit_scale_scalar_a, |
|
"scale_text": logit_scale_scalar_t, |
|
"lr": optimizer.param_groups[0]["lr"], |
|
} |
|
else: |
|
logging.info( |
|
f"Train Epoch: {epoch} [{num_samples:>{sample_digits}}/{samples_per_epoch} ({percent_complete:.0f}%)] " |
|
f"Loss: {loss_m.val:#.5g} ({loss_m.avg:#.4g}) " |
|
f"Data (t): {data_time_m.avg:.3f} " |
|
f"Batch (t): {batch_time_m.avg:.3f} " |
|
f"LR: {optimizer.param_groups[0]['lr']:5f} " |
|
f"Logit Scale Audio: {logit_scale_scalar_a:.3f}" |
|
) |
|
|
|
|
|
log_data = { |
|
"loss": loss_m.val, |
|
"data_time": data_time_m.val, |
|
"batch_time": batch_time_m.val, |
|
"scale_audio": logit_scale_scalar_a, |
|
"lr": optimizer.param_groups[0]["lr"], |
|
} |
|
for name, val in log_data.items(): |
|
name = "train/" + name |
|
if tb_writer is not None: |
|
tb_writer.add_scalar(name, val, step) |
|
if args.wandb: |
|
assert wandb is not None, "Please install wandb." |
|
wandb.log({name: val, "step": step}) |
|
|
|
|
|
batch_time_m.reset() |
|
data_time_m.reset() |
|
|
|
|
|
|
|
def evaluate(model, data, epoch, args, tb_writer=None): |
|
metrics = {} |
|
if not args.parallel_eval: |
|
if not is_master(args): |
|
return metrics |
|
device = torch.device(args.device) |
|
model.eval() |
|
|
|
|
|
|
|
|
|
if is_master(args): |
|
print("Evaluating...") |
|
autocast = torch.cuda.amp.autocast if args.precision == "amp" else suppress |
|
if args.val_dataset_names == ["Clotho", "audiocaps"]: |
|
|
|
|
|
if args.parallel_eval: |
|
|
|
raise NotImplementedError( |
|
"Parallel evaluation not supported for eval only Clotho and audiocaps." |
|
) |
|
val_metrics_per_dataset = evaluate_clotho_audiocaps( |
|
model, data, epoch, args, autocast, device, tb_writer |
|
) |
|
for m in val_metrics_per_dataset.values(): |
|
metrics.update(m) |
|
if "epoch" not in metrics.keys(): |
|
metrics.update({"epoch": epoch}) |
|
metrics = select_top_metric_clotho_audiocaps( |
|
metrics, val_metrics_per_dataset, args |
|
) |
|
elif "val" in data and ( |
|
args.val_frequency |
|
and ((epoch % args.val_frequency) == 0 or epoch == args.epochs) |
|
): |
|
dataloader = data["val"].dataloader |
|
num_samples = 0 |
|
samples_per_val = dataloader.num_samples |
|
|
|
|
|
|
|
eval_info = {} |
|
if args.clap_mlploss: |
|
eval_info["all"] = { |
|
"cumulative_loss": 0.0, |
|
"num_samples": 0, |
|
"all_audio_features": [], |
|
"all_text_features": [], |
|
"all_audio_features_mlp": [], |
|
"all_text_features_mlp": [], |
|
} |
|
else: |
|
eval_info["all"] = { |
|
"cumulative_loss": 0.0, |
|
"num_samples": 0, |
|
"all_audio_features": [], |
|
"all_text_features": [], |
|
} |
|
|
|
with torch.no_grad(): |
|
for i, batch in enumerate(dataloader): |
|
audios = batch |
|
texts = batch["text"] |
|
|
|
|
|
all_names = list( |
|
set(["-".join(b.split("/")[-3:-1]) for b in batch["__url__"]]) |
|
) |
|
for name in all_names: |
|
if name not in eval_info.keys(): |
|
if args.clap_mlploss: |
|
eval_info[name] = { |
|
"cumulative_loss": 0.0, |
|
"num_samples": 0, |
|
"all_audio_features": [], |
|
"all_text_features": [], |
|
"all_audio_features_mlp": [], |
|
"all_text_features_mlp": [], |
|
} |
|
else: |
|
eval_info[name] = { |
|
"cumulative_loss": 0.0, |
|
"num_samples": 0, |
|
"all_audio_features": [], |
|
"all_text_features": [], |
|
} |
|
with autocast(): |
|
( |
|
audio_features, |
|
text_features, |
|
audio_features_mlp, |
|
text_features_mlp, |
|
logit_scale_a, |
|
logit_scale_t, |
|
) = model(audios, texts, device) |
|
|
|
if args.parallel_eval: |
|
|
|
if args.clap_mlploss: |
|
( |
|
audio_features, |
|
text_features, |
|
audio_features_mlp, |
|
text_features_mlp, |
|
) = gather_features( |
|
audio_features=audio_features, |
|
text_features=text_features, |
|
audio_features_mlp=audio_features_mlp, |
|
text_features_mlp=text_features_mlp, |
|
local_loss=False, |
|
gather_with_grad=False, |
|
rank=args.rank, |
|
world_size=args.world_size, |
|
use_horovod=args.horovod, |
|
mlp_loss=args.clap_mlploss, |
|
) |
|
else: |
|
(audio_features, text_features,) = gather_features( |
|
audio_features=audio_features, |
|
text_features=text_features, |
|
local_loss=False, |
|
gather_with_grad=False, |
|
rank=args.rank, |
|
world_size=args.world_size, |
|
use_horovod=args.horovod, |
|
mlp_loss=args.clap_mlploss, |
|
) |
|
|
|
if is_master(args): |
|
num_samples += audio_features.shape[0] |
|
for n in [*all_names, "all"]: |
|
if n == "all": |
|
eval_info[n]["all_audio_features"].append( |
|
audio_features.cpu() |
|
) |
|
eval_info[n]["all_text_features"].append( |
|
text_features.cpu() |
|
) |
|
if args.clap_mlploss: |
|
eval_info[n]["all_audio_features_mlp"].append( |
|
audio_features_mlp.cpu() |
|
) |
|
eval_info[n]["all_text_features_mlp"].append( |
|
text_features_mlp.cpu() |
|
) |
|
else: |
|
idx = np.where( |
|
np.array( |
|
[ |
|
"-".join(b.split("/")[-3:-1]) |
|
for b in batch["__url__"] |
|
] |
|
) |
|
== n |
|
)[0] |
|
eval_info[n]["all_audio_features"].append( |
|
audio_features.cpu().index_select( |
|
0, torch.tensor(idx).long() |
|
) |
|
) |
|
eval_info[n]["all_text_features"].append( |
|
text_features.cpu().index_select( |
|
0, torch.tensor(idx).long() |
|
) |
|
) |
|
if args.clap_mlploss: |
|
eval_info[n]["all_audio_features_mlp"].append( |
|
audio_features_mlp.cpu().index_select( |
|
0, torch.tensor(idx).long() |
|
) |
|
) |
|
eval_info[n]["all_text_features_mlp"].append( |
|
text_features_mlp.cpu().index_select( |
|
0, torch.tensor(idx).long() |
|
) |
|
) |
|
|
|
|
|
|
|
|
|
if is_master(args) and (i % 100) == 0: |
|
logging.info( |
|
f"Eval Epoch: {epoch} [{num_samples} / {samples_per_val}]" |
|
) |
|
if is_master(args): |
|
val_metrics_per_dataset = {} |
|
for n in eval_info.keys(): |
|
if args.clap_mlploss: |
|
metrics_single_dataset = get_metrics( |
|
audio_features=torch.cat( |
|
eval_info[n]["all_audio_features"] |
|
), |
|
text_features=torch.cat(eval_info[n]["all_text_features"]), |
|
logit_scale_a=logit_scale_a.cpu(), |
|
audio_features_mlp=torch.cat( |
|
eval_info[n]["all_audio_features_mlp"] |
|
), |
|
text_features_mlp=torch.cat( |
|
eval_info[n]["all_text_features_mlp"] |
|
), |
|
logit_scale_t=logit_scale_t.cpu(), |
|
mlp_loss=args.clap_mlploss, |
|
) |
|
else: |
|
metrics_single_dataset = get_metrics( |
|
audio_features=torch.cat( |
|
eval_info[n]["all_audio_features"] |
|
), |
|
text_features=torch.cat(eval_info[n]["all_text_features"]), |
|
logit_scale_a=logit_scale_a.cpu(), |
|
mlp_loss=args.clap_mlploss, |
|
) |
|
val_metrics_per_dataset[n] = { |
|
n + "/" + k: v for k, v in metrics_single_dataset.items() |
|
} |
|
metrics.update(val_metrics_per_dataset[n]) |
|
if "epoch" not in metrics.keys(): |
|
metrics.update({"epoch": epoch}) |
|
if is_master(args): |
|
if not metrics: |
|
return metrics |
|
|
|
logging.info( |
|
f"Eval Epoch: {epoch} " |
|
+ "\n".join( |
|
[ |
|
"\t".join([f"{k}: {round(v, 4):.4f}" for k, v in m.items()]) |
|
for m in val_metrics_per_dataset.values() |
|
] |
|
) |
|
) |
|
|
|
if args.save_logs: |
|
for name, val in metrics.items(): |
|
if tb_writer is not None: |
|
tb_writer.add_scalar(f"val/{name}", val, epoch) |
|
|
|
with open(os.path.join(args.checkpoint_path, "results.jsonl"), "a+") as f: |
|
f.write(json.dumps(metrics)) |
|
f.write("\n") |
|
|
|
if args.wandb: |
|
assert wandb is not None, "Please install wandb." |
|
for name, val in metrics.items(): |
|
wandb.log({f"val/{name}": val, "epoch": epoch}) |
|
|
|
return metrics |
|
else: |
|
return metrics |
|
|
|
|
|
def get_metrics( |
|
audio_features, |
|
text_features, |
|
logit_scale_a, |
|
audio_features_mlp=None, |
|
text_features_mlp=None, |
|
logit_scale_t=None, |
|
mlp_loss=False, |
|
): |
|
metrics = {} |
|
if mlp_loss: |
|
|
|
a_logits_per_audio = ( |
|
(logit_scale_a * audio_features @ text_features_mlp.t()).detach().cpu() |
|
) |
|
a_logits_per_text = a_logits_per_audio.t().detach().cpu() |
|
t_logits_per_audio = ( |
|
(logit_scale_t * audio_features_mlp @ text_features.t()).detach().cpu() |
|
) |
|
t_logits_per_text = t_logits_per_audio.t().detach().cpu() |
|
|
|
labels = torch.arange(audio_features.shape[0]).long() |
|
|
|
total_loss = ( |
|
F.cross_entropy(a_logits_per_audio, labels) |
|
+ F.cross_entropy(a_logits_per_text, labels) |
|
+ F.cross_entropy(t_logits_per_audio, labels) |
|
+ F.cross_entropy(t_logits_per_text, labels) |
|
) / 4 |
|
|
|
metrics[f"cumulative_loss"] = total_loss.item() |
|
metrics[f"num_samples"] = audio_features.shape[0] |
|
|
|
logits = { |
|
"audio_to_text": (a_logits_per_audio + t_logits_per_audio) / 2, |
|
"text_to_audio": (a_logits_per_text + t_logits_per_text) / 2, |
|
} |
|
ground_truth = torch.arange(len(text_features)).view(-1, 1) |
|
|
|
else: |
|
|
|
|
|
logits_per_audio = ( |
|
(logit_scale_a * audio_features @ text_features.t()).detach().cpu() |
|
) |
|
logits_per_text = logits_per_audio.t().detach().cpu() |
|
|
|
labels = torch.arange(audio_features.shape[0]).long() |
|
|
|
total_loss = ( |
|
F.cross_entropy(logits_per_audio, labels) |
|
+ F.cross_entropy(logits_per_text, labels) |
|
) / 2 |
|
|
|
metrics[f"cumulative_loss"] = total_loss.item() |
|
metrics[f"num_samples"] = audio_features.shape[0] |
|
|
|
logits = {"audio_to_text": logits_per_audio, "text_to_audio": logits_per_text} |
|
|
|
ground_truth = torch.arange(len(text_features)).view(-1, 1) |
|
|
|
for name, logit in logits.items(): |
|
ranking = torch.argsort(logit, descending=True) |
|
preds = torch.where(ranking == ground_truth)[ |
|
1 |
|
] |
|
preds = preds.detach().cpu().numpy() |
|
metrics[f"{name}_mean_rank"] = preds.mean() + 1 |
|
metrics[f"{name}_median_rank"] = np.floor(np.median(preds)) + 1 |
|
for k in [1, 5, 10]: |
|
metrics[f"{name}_R@{k}"] = np.mean(preds < k) |
|
|
|
metrics[f"{name}_mAP@10"] = np.mean(np.where(preds < 10, 1 / (preds + 1), 0.0)) |
|
|
|
return metrics |
|
|
|
|
|
def evaluate_clotho_audiocaps( |
|
model, data, epoch, args, autocast, device, tb_writer=None |
|
): |
|
""" |
|
Adapted from https://github.com/XinhaoMei/audio-text_retrieval/blob/main/tools/utils.py. |
|
1. for text-to-audio retrieval, do 5 times and average the results |
|
2. for R@1, R@5, R@10 in audio-to-text retrieval, take the best rank among 5 text |
|
3. for map@10 in audio-to-text retrieval: |
|
3.1: sort the rank of 5 text |
|
3.2: exclude the rank >=10 (0-index) |
|
3.3: compute the map regarding the remaining ranks: np.mean(np.arange(1, len(ranks)+1) / ranks). |
|
(3.3) That is, take the top ranks of 5 text that is < 10, and assign the descending number as ground truth. |
|
(3.3) E.g.: the ground truth of first rank of the 5 text should be 1, the second rank should be 2, etc. |
|
""" |
|
|
|
dataloader = data["val"].dataloader |
|
with torch.no_grad(): |
|
eval_info = {} |
|
for i, batch in enumerate(dataloader): |
|
audios = batch |
|
|
|
|
|
if args.tmodel == "transformer": |
|
from open_clip import tokenize |
|
|
|
texts = [tokenize(t) for t in batch["full_text"]] |
|
texts = torch.cat(texts) |
|
else: |
|
from .data import tokenizer |
|
|
|
texts = [ |
|
tokenizer(t) for t in batch["full_text"] |
|
] |
|
texts = { |
|
k: torch.cat([t[k] for t in texts]) for k in texts[0].keys() |
|
} |
|
|
|
|
|
|
|
all_names = list( |
|
set(["-".join(b.split("/")[-3:-1]) for b in batch["__url__"]]) |
|
) |
|
for name in all_names: |
|
if name not in eval_info.keys(): |
|
|
|
eval_info[name] = { |
|
"cumulative_loss": 0.0, |
|
"num_samples": 0, |
|
"all_audio_features": [], |
|
"all_text_features": [], |
|
} |
|
with autocast(): |
|
audio_features = model(audios, None, device) |
|
text_features = model(None, texts, device) |
|
audio_features = F.normalize(audio_features, dim=-1) |
|
text_features = F.normalize(text_features, dim=-1) |
|
|
|
all_names = list( |
|
set(["-".join(b.split("/")[-3:-1]) for b in batch["__url__"]]) |
|
) |
|
for n in all_names: |
|
idx = np.where( |
|
np.array( |
|
["-".join(b.split("/")[-3:-1]) for b in batch["__url__"]] |
|
) |
|
== n |
|
)[0] |
|
eval_info[n]["all_audio_features"].append( |
|
audio_features.cpu().index_select(0, torch.tensor(idx).long()) |
|
) |
|
|
|
|
|
|
|
|
|
eval_info[n]["all_text_features"].append( |
|
text_features.cpu() |
|
.reshape([-1, 5, text_features.shape[1]]) |
|
.index_select(0, torch.tensor(idx).long()) |
|
.reshape([-1, text_features.shape[1]]) |
|
) |
|
|
|
val_metrics_all = {} |
|
|
|
for n in eval_info.keys(): |
|
logit_scale_a, logit_scale_t = model(None, None, device) |
|
logit_scale_a = logit_scale_a.cpu() |
|
|
|
audio_features = torch.cat(eval_info[n]["all_audio_features"], dim=0) |
|
text_features = torch.cat(eval_info[n]["all_text_features"], dim=0) |
|
|
|
logits_per_audio = ( |
|
(logit_scale_a * audio_features @ text_features.t()).detach().cpu() |
|
) |
|
logits_per_text = logits_per_audio.t().detach().cpu() |
|
|
|
|
|
|
|
|
|
logging.info( |
|
f"dataset {n}, logits_per_audio shape: {logits_per_audio.shape}, " |
|
f"logits_per_text shape: {logits_per_text.shape}" |
|
) |
|
|
|
metrics = {} |
|
num_samples = audio_features.shape[0] |
|
metrics[f"num_samples"] = num_samples |
|
|
|
|
|
|
|
|
|
|
|
labels = torch.arange(audio_features.shape[0]).long() |
|
audio_to_text_loss = [ |
|
F.cross_entropy( |
|
logits_per_audio.reshape(num_samples, num_samples, 5)[:, :, d], |
|
labels, |
|
) |
|
for d in range(5) |
|
] |
|
text_to_audio_loss = [ |
|
F.cross_entropy( |
|
logits_per_text.reshape(num_samples, 5, num_samples)[:, d, :], |
|
labels, |
|
) |
|
for d in range(5) |
|
] |
|
total_loss = (np.mean(audio_to_text_loss) + np.mean(text_to_audio_loss)) / 2 |
|
|
|
metrics[f"cumulative_loss"] = total_loss.item() |
|
|
|
|
|
pred_text = [] |
|
for d in range(5): |
|
logit = logits_per_text.reshape(num_samples, 5, num_samples)[:, d, :] |
|
ground_truth = torch.arange(len(logit)).view(-1, 1) |
|
ranking = torch.argsort( |
|
logit, descending=True |
|
) |
|
preds = torch.where(ranking == ground_truth)[1] |
|
pred_text.append(preds.detach().cpu().numpy()) |
|
pred_text_concat = np.concatenate(pred_text, axis=0) |
|
metrics[f"text_to_audio_mean_rank"] = pred_text_concat.mean() + 1 |
|
metrics[f"text_to_audio_median_rank"] = ( |
|
np.floor(np.median(pred_text_concat)) + 1 |
|
) |
|
for k in [1, 5, 10]: |
|
metrics[f"text_to_audio_R@{k}"] = np.mean(pred_text_concat < k) |
|
|
|
metrics[f"text_to_audio_mAP@10"] = np.mean( |
|
np.where(pred_text_concat < 10, 1 / (pred_text_concat + 1), 0.0) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
map_all = [] |
|
pred_audio_all = [] |
|
for d in range(num_samples): |
|
|
|
logit_single = logits_per_audio[d, :] |
|
|
|
ranking = torch.argsort( |
|
logit_single, descending=True |
|
) |
|
|
|
ground_truth = torch.arange(d * 5, d * 5 + 5)[None] |
|
all_pred = torch.where( |
|
torch.stack([ranking] * 5) == ground_truth.view(-1, 1) |
|
)[1] |
|
min_pred = torch.min(all_pred) |
|
pred_audio_all.append(min_pred.detach().cpu().numpy()) |
|
all_pred_filter = all_pred[all_pred < 10].detach().cpu().numpy() |
|
|
|
map_single = ( |
|
np.sum( |
|
(np.arange(1, len(all_pred_filter) + 1) / (all_pred_filter + 1)) |
|
) |
|
/ 5 |
|
) |
|
map_all.append(map_single) |
|
metrics[f"audio_to_text_mAP@10"] = np.mean(map_all) |
|
for k in [1, 5, 10]: |
|
metrics[f"audio_to_text_R@{k}"] = np.mean(np.array(pred_audio_all) < k) |
|
|
|
val_metrics_all[n] = {n + "/" + k: v for k, v in metrics.items()} |
|
return val_metrics_all |
|
|
|
|
|
def calculate_selection_performance_clotho_audiocaps(val_metrics_per_dataset): |
|
""" |
|
Calculate performance for Clotho+AudioCaps for model selection. |
|
""" |
|
selection_performance_all = [] |
|
for n in val_metrics_per_dataset.keys(): |
|
selection_performance = ( |
|
val_metrics_per_dataset[n][f"{n}/audio_to_text_mAP@10"] |
|
+ val_metrics_per_dataset[n][f"{n}/text_to_audio_mAP@10"] |
|
) / 2 |
|
selection_performance_all.append(selection_performance) |
|
return np.mean(selection_performance_all) |
|
|
|
|
|
def select_top_metric_clotho_audiocaps(metrics, val_metrics_per_dataset, args): |
|
|
|
|
|
|
|
if not hasattr(args, "top_selection_performance"): |
|
selection_performance = calculate_selection_performance_clotho_audiocaps( |
|
val_metrics_per_dataset |
|
) |
|
|
|
metric_update = {} |
|
for n in val_metrics_per_dataset.keys(): |
|
for k in val_metrics_per_dataset[n].keys(): |
|
metric_update[ |
|
k.split("/")[0] + "-top" + "/" + k.split("/")[1] |
|
] = val_metrics_per_dataset[n][k] |
|
metric_update["top_selection_performance"] = selection_performance |
|
metric_update["top-selection-epoch"] = metrics["epoch"] |
|
metrics.update(metric_update) |
|
args.top_metric = metric_update |
|
args.top_selection_performance = selection_performance |
|
else: |
|
selection_performance_new = calculate_selection_performance_clotho_audiocaps( |
|
val_metrics_per_dataset |
|
) |
|
selection_performance_old = args.top_selection_performance |
|
if selection_performance_new > selection_performance_old: |
|
metric_update = {} |
|
for n in val_metrics_per_dataset.keys(): |
|
for k in val_metrics_per_dataset[n].keys(): |
|
metric_update[ |
|
k.split("/")[0] + "-top" + "/" + k.split("/")[1] |
|
] = val_metrics_per_dataset[n][k] |
|
metric_update["top_selection_performance"] = selection_performance_new |
|
metric_update["top-selection-epoch"] = metrics["epoch"] |
|
metrics.update(metric_update) |
|
args.top_metric = metric_update |
|
args.top_selection_performance = selection_performance_new |
|
else: |
|
metrics.update(args.top_metric) |
|
return metrics |
|
|