|
""" CLAP Model |
|
|
|
Adapted from CLIP: https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. |
|
Adapted to the Audio Task. |
|
""" |
|
|
|
from collections import OrderedDict |
|
from dataclasses import dataclass |
|
from email.mime import audio |
|
from typing import Tuple, Union, Callable, Optional |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from .timm_model import TimmModel |
|
import logging |
|
from .utils import freeze_batch_norm_2d |
|
|
|
from .pann_model import create_pann_model |
|
from .htsat import create_htsat_model |
|
from transformers import BertModel, RobertaModel, BartModel |
|
from transformers.tokenization_utils_base import BatchEncoding |
|
|
|
import json |
|
with open('./qa_mdt/offset_pretrained_checkpoints.json', 'r') as config_file: |
|
config_data = json.load(config_file) |
|
|
|
class MLPLayers(nn.Module): |
|
def __init__(self, units=[512, 512, 512], nonlin=nn.ReLU(), dropout=0.1): |
|
super(MLPLayers, self).__init__() |
|
self.nonlin = nonlin |
|
self.dropout = dropout |
|
|
|
sequence = [] |
|
for u0, u1 in zip(units[:-1], units[1:]): |
|
sequence.append(nn.Linear(u0, u1)) |
|
sequence.append(self.nonlin) |
|
sequence.append(nn.Dropout(self.dropout)) |
|
sequence = sequence[:-2] |
|
|
|
self.sequential = nn.Sequential(*sequence) |
|
|
|
def forward(self, X): |
|
X = self.sequential(X) |
|
return X |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, inplanes, planes, stride=1): |
|
super().__init__() |
|
|
|
|
|
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
|
|
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
|
|
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() |
|
|
|
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion) |
|
|
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = None |
|
self.stride = stride |
|
|
|
if stride > 1 or inplanes != planes * Bottleneck.expansion: |
|
|
|
self.downsample = nn.Sequential( |
|
OrderedDict( |
|
[ |
|
("-1", nn.AvgPool2d(stride)), |
|
( |
|
"0", |
|
nn.Conv2d( |
|
inplanes, |
|
planes * self.expansion, |
|
1, |
|
stride=1, |
|
bias=False, |
|
), |
|
), |
|
("1", nn.BatchNorm2d(planes * self.expansion)), |
|
] |
|
) |
|
) |
|
|
|
def forward(self, x: torch.Tensor): |
|
identity = x |
|
|
|
out = self.relu(self.bn1(self.conv1(x))) |
|
out = self.relu(self.bn2(self.conv2(out))) |
|
out = self.avgpool(out) |
|
out = self.bn3(self.conv3(out)) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
return out |
|
|
|
|
|
class AttentionPool2d(nn.Module): |
|
def __init__( |
|
self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None |
|
): |
|
super().__init__() |
|
self.positional_embedding = nn.Parameter( |
|
torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5 |
|
) |
|
self.k_proj = nn.Linear(embed_dim, embed_dim) |
|
self.q_proj = nn.Linear(embed_dim, embed_dim) |
|
self.v_proj = nn.Linear(embed_dim, embed_dim) |
|
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) |
|
self.num_heads = num_heads |
|
|
|
def forward(self, x): |
|
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute( |
|
2, 0, 1 |
|
) |
|
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) |
|
x = x + self.positional_embedding[:, None, :].to(x.dtype) |
|
x, _ = F.multi_head_attention_forward( |
|
query=x, |
|
key=x, |
|
value=x, |
|
embed_dim_to_check=x.shape[-1], |
|
num_heads=self.num_heads, |
|
q_proj_weight=self.q_proj.weight, |
|
k_proj_weight=self.k_proj.weight, |
|
v_proj_weight=self.v_proj.weight, |
|
in_proj_weight=None, |
|
in_proj_bias=torch.cat( |
|
[self.q_proj.bias, self.k_proj.bias, self.v_proj.bias] |
|
), |
|
bias_k=None, |
|
bias_v=None, |
|
add_zero_attn=False, |
|
dropout_p=0, |
|
out_proj_weight=self.c_proj.weight, |
|
out_proj_bias=self.c_proj.bias, |
|
use_separate_proj_weight=True, |
|
training=self.training, |
|
need_weights=False, |
|
) |
|
|
|
return x[0] |
|
|
|
|
|
class ModifiedResNet(nn.Module): |
|
""" |
|
A ResNet class that is similar to torchvision's but contains the following changes: |
|
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. |
|
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 |
|
- The final pooling layer is a QKV attention instead of an average pool |
|
""" |
|
|
|
def __init__(self, layers, output_dim, heads, image_size=224, width=64): |
|
super().__init__() |
|
self.output_dim = output_dim |
|
self.image_size = image_size |
|
|
|
|
|
self.conv1 = nn.Conv2d( |
|
3, width // 2, kernel_size=3, stride=2, padding=1, bias=False |
|
) |
|
self.bn1 = nn.BatchNorm2d(width // 2) |
|
self.conv2 = nn.Conv2d( |
|
width // 2, width // 2, kernel_size=3, padding=1, bias=False |
|
) |
|
self.bn2 = nn.BatchNorm2d(width // 2) |
|
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(width) |
|
self.avgpool = nn.AvgPool2d(2) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
|
|
self._inplanes = width |
|
self.layer1 = self._make_layer(width, layers[0]) |
|
self.layer2 = self._make_layer(width * 2, layers[1], stride=2) |
|
self.layer3 = self._make_layer(width * 4, layers[2], stride=2) |
|
self.layer4 = self._make_layer(width * 8, layers[3], stride=2) |
|
|
|
embed_dim = width * 32 |
|
self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim) |
|
|
|
self.init_parameters() |
|
|
|
def _make_layer(self, planes, blocks, stride=1): |
|
layers = [Bottleneck(self._inplanes, planes, stride)] |
|
|
|
self._inplanes = planes * Bottleneck.expansion |
|
for _ in range(1, blocks): |
|
layers.append(Bottleneck(self._inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def init_parameters(self): |
|
if self.attnpool is not None: |
|
std = self.attnpool.c_proj.in_features**-0.5 |
|
nn.init.normal_(self.attnpool.q_proj.weight, std=std) |
|
nn.init.normal_(self.attnpool.k_proj.weight, std=std) |
|
nn.init.normal_(self.attnpool.v_proj.weight, std=std) |
|
nn.init.normal_(self.attnpool.c_proj.weight, std=std) |
|
|
|
for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]: |
|
for name, param in resnet_block.named_parameters(): |
|
if name.endswith("bn3.weight"): |
|
nn.init.zeros_(param) |
|
|
|
def lock(self, unlocked_groups=0, freeze_bn_stats=False): |
|
assert ( |
|
unlocked_groups == 0 |
|
), "partial locking not currently supported for this model" |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
if freeze_bn_stats: |
|
freeze_batch_norm_2d(self) |
|
|
|
def stem(self, x): |
|
for conv, bn in [ |
|
(self.conv1, self.bn1), |
|
(self.conv2, self.bn2), |
|
(self.conv3, self.bn3), |
|
]: |
|
x = self.relu(bn(conv(x))) |
|
x = self.avgpool(x) |
|
return x |
|
|
|
def forward(self, x): |
|
x = self.stem(x) |
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
x = self.attnpool(x) |
|
|
|
return x |
|
|
|
|
|
class LayerNorm(nn.LayerNorm): |
|
"""Subclass torch's LayerNorm to handle fp16.""" |
|
|
|
def forward(self, x: torch.Tensor): |
|
orig_type = x.dtype |
|
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) |
|
return x.to(orig_type) |
|
|
|
|
|
class QuickGELU(nn.Module): |
|
|
|
def forward(self, x: torch.Tensor): |
|
return x * torch.sigmoid(1.702 * x) |
|
|
|
|
|
class ResidualAttentionBlock(nn.Module): |
|
def __init__(self, d_model: int, n_head: int, act_layer: Callable = nn.GELU): |
|
super().__init__() |
|
|
|
self.attn = nn.MultiheadAttention(d_model, n_head) |
|
self.ln_1 = LayerNorm(d_model) |
|
self.mlp = nn.Sequential( |
|
OrderedDict( |
|
[ |
|
("c_fc", nn.Linear(d_model, d_model * 4)), |
|
("gelu", act_layer()), |
|
("c_proj", nn.Linear(d_model * 4, d_model)), |
|
] |
|
) |
|
) |
|
self.ln_2 = LayerNorm(d_model) |
|
|
|
def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): |
|
return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0] |
|
|
|
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): |
|
x = x + self.attention(self.ln_1(x), attn_mask=attn_mask) |
|
x = x + self.mlp(self.ln_2(x)) |
|
return x |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__( |
|
self, width: int, layers: int, heads: int, act_layer: Callable = nn.GELU |
|
): |
|
super().__init__() |
|
self.width = width |
|
self.layers = layers |
|
self.resblocks = nn.ModuleList( |
|
[ |
|
ResidualAttentionBlock(width, heads, act_layer=act_layer) |
|
for _ in range(layers) |
|
] |
|
) |
|
|
|
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): |
|
for r in self.resblocks: |
|
x = r(x, attn_mask=attn_mask) |
|
return x |
|
|
|
|
|
class VisualTransformer(nn.Module): |
|
def __init__( |
|
self, |
|
image_size: int, |
|
patch_size: int, |
|
width: int, |
|
layers: int, |
|
heads: int, |
|
output_dim: int, |
|
act_layer: Callable = nn.GELU, |
|
): |
|
super().__init__() |
|
self.image_size = image_size |
|
self.output_dim = output_dim |
|
self.conv1 = nn.Conv2d( |
|
in_channels=3, |
|
out_channels=width, |
|
kernel_size=patch_size, |
|
stride=patch_size, |
|
bias=False, |
|
) |
|
|
|
scale = width**-0.5 |
|
self.class_embedding = nn.Parameter(scale * torch.randn(width)) |
|
self.positional_embedding = nn.Parameter( |
|
scale * torch.randn((image_size // patch_size) ** 2 + 1, width) |
|
) |
|
self.ln_pre = LayerNorm(width) |
|
|
|
self.text_branch = Transformer(width, layers, heads, act_layer=act_layer) |
|
|
|
self.ln_post = LayerNorm(width) |
|
self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) |
|
|
|
def lock(self, unlocked_groups=0, freeze_bn_stats=False): |
|
assert ( |
|
unlocked_groups == 0 |
|
), "partial locking not currently supported for this model" |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, x: torch.Tensor): |
|
x = self.conv1(x) |
|
x = x.reshape(x.shape[0], x.shape[1], -1) |
|
x = x.permute(0, 2, 1) |
|
x = torch.cat( |
|
[ |
|
self.class_embedding.to(x.dtype) |
|
+ torch.zeros( |
|
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device |
|
), |
|
x, |
|
], |
|
dim=1, |
|
) |
|
x = x + self.positional_embedding.to(x.dtype) |
|
x = self.ln_pre(x) |
|
|
|
x = x.permute(1, 0, 2) |
|
x = self.text_branch(x) |
|
x = x.permute(1, 0, 2) |
|
|
|
x = self.ln_post(x[:, 0, :]) |
|
|
|
if self.proj is not None: |
|
x = x @ self.proj |
|
|
|
return x |
|
|
|
|
|
@dataclass |
|
class CLAPVisionCfg: |
|
layers: Union[Tuple[int, int, int, int], int] = 12 |
|
width: int = 768 |
|
patch_size: int = 16 |
|
image_size: Union[Tuple[int, int], int] = 224 |
|
timm_model_name: str = ( |
|
None |
|
) |
|
timm_model_pretrained: bool = ( |
|
False |
|
) |
|
timm_pool: str = ( |
|
"avg" |
|
) |
|
timm_proj: str = ( |
|
"linear" |
|
) |
|
|
|
|
|
|
|
@dataclass |
|
class CLAPAudioCfp: |
|
model_type: str = "PANN" |
|
model_name: str = "Cnn14" |
|
sample_rate: int = 48000 |
|
|
|
audio_length: int = 1024 |
|
window_size: int = 1024 |
|
hop_size: int = 1024 |
|
fmin: int = 50 |
|
fmax: int = 14000 |
|
class_num: int = 527 |
|
mel_bins: int = 64 |
|
clip_samples: int = 480000 |
|
|
|
|
|
@dataclass |
|
class CLAPTextCfg: |
|
context_length: int |
|
vocab_size: int |
|
width: int |
|
heads: int |
|
layers: int |
|
model_type: str |
|
|
|
|
|
class CLAP(nn.Module): |
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
audio_cfg: CLAPAudioCfp, |
|
text_cfg: CLAPTextCfg, |
|
quick_gelu: bool = False, |
|
enable_fusion: bool = False, |
|
fusion_type: str = "None", |
|
joint_embed_shape: int = 512, |
|
mlp_act: str = "relu", |
|
): |
|
super().__init__() |
|
if isinstance(audio_cfg, dict): |
|
audio_cfg = CLAPAudioCfp(**audio_cfg) |
|
if isinstance(text_cfg, dict): |
|
text_cfg = CLAPTextCfg(**text_cfg) |
|
|
|
self.audio_cfg = audio_cfg |
|
self.text_cfg = text_cfg |
|
self.enable_fusion = enable_fusion |
|
self.fusion_type = fusion_type |
|
self.joint_embed_shape = joint_embed_shape |
|
self.mlp_act = mlp_act |
|
|
|
self.context_length = text_cfg.context_length |
|
|
|
|
|
|
|
|
|
act_layer = QuickGELU if quick_gelu else nn.GELU |
|
|
|
if mlp_act == "relu": |
|
mlp_act_layer = nn.ReLU() |
|
elif mlp_act == "gelu": |
|
mlp_act_layer = nn.GELU() |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
|
|
if audio_cfg.model_type == "PANN": |
|
self.audio_branch = create_pann_model(audio_cfg, enable_fusion, fusion_type) |
|
elif audio_cfg.model_type == "HTSAT": |
|
self.audio_branch = create_htsat_model( |
|
audio_cfg, enable_fusion, fusion_type |
|
) |
|
else: |
|
logging.error(f"Model config for {audio_cfg.model_type} not found") |
|
raise RuntimeError(f"Model config for {audio_cfg.model_type} not found.") |
|
|
|
|
|
|
|
if text_cfg.model_type == "transformer": |
|
self.text_branch = Transformer( |
|
width=text_cfg.width, |
|
layers=text_cfg.layers, |
|
heads=text_cfg.heads, |
|
act_layer=act_layer, |
|
) |
|
self.vocab_size = text_cfg.vocab_size |
|
self.token_embedding = nn.Embedding(text_cfg.vocab_size, text_cfg.width) |
|
self.positional_embedding = nn.Parameter( |
|
torch.empty(self.context_length, text_cfg.width) |
|
) |
|
self.ln_final = LayerNorm(text_cfg.width) |
|
self.text_transform = MLPLayers( |
|
units=[ |
|
self.joint_embed_shape, |
|
self.joint_embed_shape, |
|
self.joint_embed_shape, |
|
], |
|
dropout=0.1, |
|
) |
|
self.text_projection = nn.Sequential( |
|
nn.Linear(text_cfg.width, self.joint_embed_shape), |
|
mlp_act_layer, |
|
nn.Linear(self.joint_embed_shape, self.joint_embed_shape), |
|
) |
|
elif text_cfg.model_type == "bert": |
|
self.text_branch = BertModel.from_pretrained("/train20/intern/permanent/changli7/dataset_ptm/bert_base_uncased") |
|
self.text_transform = MLPLayers( |
|
units=[ |
|
self.joint_embed_shape, |
|
self.joint_embed_shape, |
|
self.joint_embed_shape, |
|
], |
|
dropout=0.1, |
|
) |
|
self.text_projection = nn.Sequential( |
|
nn.Linear(768, self.joint_embed_shape), |
|
mlp_act_layer, |
|
nn.Linear(self.joint_embed_shape, self.joint_embed_shape), |
|
) |
|
elif text_cfg.model_type == "roberta": |
|
self.text_branch = RobertaModel.from_pretrained(config_data["roberta-base"]) |
|
self.text_transform = MLPLayers( |
|
units=[ |
|
self.joint_embed_shape, |
|
self.joint_embed_shape, |
|
self.joint_embed_shape, |
|
], |
|
dropout=0.1, |
|
) |
|
self.text_projection = nn.Sequential( |
|
nn.Linear(768, self.joint_embed_shape), |
|
mlp_act_layer, |
|
nn.Linear(self.joint_embed_shape, self.joint_embed_shape), |
|
) |
|
elif text_cfg.model_type == "bart": |
|
self.text_branch = BartModel.from_pretrained("/train20/intern/permanent/changli7/dataset_ptm/bart-base") |
|
self.text_transform = MLPLayers( |
|
units=[ |
|
self.joint_embed_shape, |
|
self.joint_embed_shape, |
|
self.joint_embed_shape, |
|
], |
|
dropout=0.1, |
|
) |
|
self.text_projection = nn.Sequential( |
|
nn.Linear(768, self.joint_embed_shape), |
|
mlp_act_layer, |
|
nn.Linear(self.joint_embed_shape, self.joint_embed_shape), |
|
) |
|
else: |
|
logging.error(f"Model config for {text_cfg.model_type} not found") |
|
raise RuntimeError(f"Model config for {text_cfg.model_type} not found.") |
|
self.text_branch_type = text_cfg.model_type |
|
|
|
|
|
|
|
self.audio_transform = MLPLayers( |
|
units=[ |
|
self.joint_embed_shape, |
|
self.joint_embed_shape, |
|
self.joint_embed_shape, |
|
], |
|
dropout=0.1, |
|
) |
|
|
|
|
|
|
|
|
|
self.audio_projection = nn.Sequential( |
|
nn.Linear(embed_dim, self.joint_embed_shape), |
|
mlp_act_layer, |
|
nn.Linear(self.joint_embed_shape, self.joint_embed_shape), |
|
) |
|
|
|
self.logit_scale_a = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) |
|
self.logit_scale_t = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) |
|
self.register_buffer("attn_mask", self.build_attention_mask(), persistent=False) |
|
|
|
self.init_text_branch_parameters() |
|
|
|
def init_text_branch_parameters(self): |
|
if self.text_branch_type == "transformer": |
|
nn.init.normal_(self.token_embedding.weight, std=0.02) |
|
nn.init.normal_(self.positional_embedding, std=0.01) |
|
proj_std = (self.text_branch.width**-0.5) * ( |
|
(2 * self.text_branch.layers) ** -0.5 |
|
) |
|
attn_std = self.text_branch.width**-0.5 |
|
fc_std = (2 * self.text_branch.width) ** -0.5 |
|
for block in self.text_branch.resblocks: |
|
nn.init.normal_(block.attn.in_proj_weight, std=attn_std) |
|
nn.init.normal_(block.attn.out_proj.weight, std=proj_std) |
|
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) |
|
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) |
|
if self.text_branch_type == "bert" or self.text_branch_type == "roberta": |
|
width = self.text_branch.embeddings.word_embeddings.weight.shape[-1] |
|
elif self.text_branch_type == "bart": |
|
width = self.text_branch.shared.weight.shape[-1] |
|
else: |
|
width = self.text_branch.width |
|
nn.init.constant_(self.logit_scale_a, np.log(1 / 0.07)) |
|
nn.init.constant_(self.logit_scale_t, np.log(1 / 0.07)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def build_attention_mask(self): |
|
|
|
|
|
mask = torch.empty(self.context_length, self.context_length) |
|
mask.fill_(float("-inf")) |
|
mask.triu_(1) |
|
return mask |
|
|
|
def encode_audio(self, audio, device): |
|
return self.audio_branch( |
|
audio, mixup_lambda=None, device=device |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def encode_text(self, text, device): |
|
if self.text_branch_type == "transformer": |
|
text = text.to(device=device, non_blocking=True) |
|
x = self.token_embedding(text) |
|
|
|
x = x + self.positional_embedding |
|
x = x.permute(1, 0, 2) |
|
x = self.text_branch(x, attn_mask=self.attn_mask) |
|
x = x.permute(1, 0, 2) |
|
x = self.ln_final(x) |
|
|
|
|
|
|
|
x = self.text_projection(x[torch.arange(x.shape[0]), text.argmax(dim=-1)]) |
|
elif self.text_branch_type == "bert": |
|
|
|
|
|
x = self.text_branch( |
|
input_ids=text["input_ids"].to(device=device, non_blocking=True), |
|
attention_mask=text["attention_mask"].to( |
|
device=device, non_blocking=True |
|
), |
|
token_type_ids=text["token_type_ids"].to( |
|
device=device, non_blocking=True |
|
), |
|
)["pooler_output"] |
|
x = self.text_projection(x) |
|
elif self.text_branch_type == "roberta": |
|
x = self.text_branch( |
|
input_ids=text["input_ids"].to(device=device, non_blocking=True), |
|
attention_mask=text["attention_mask"].to( |
|
device=device, non_blocking=True |
|
), |
|
)["pooler_output"] |
|
x = self.text_projection(x) |
|
elif self.text_branch_type == "bart": |
|
x = torch.mean( |
|
self.text_branch( |
|
input_ids=text["input_ids"].to(device=device, non_blocking=True), |
|
attention_mask=text["attention_mask"].to( |
|
device=device, non_blocking=True |
|
), |
|
)["encoder_last_hidden_state"], |
|
axis=1, |
|
) |
|
x = self.text_projection(x) |
|
else: |
|
logging.error(f"Model type {self.text_branch_type} not found") |
|
raise RuntimeError(f"Model type {self.text_branch_type} not found.") |
|
return x |
|
|
|
def forward(self, audio, text, device=None): |
|
"""Forward audio and text into the CLAP |
|
|
|
Parameters |
|
---------- |
|
audio: torch.Tensor (batch_size, audio_length) |
|
the time-domain audio input / the batch of mel_spec and longer list. |
|
text: torch.Tensor () // need to add |
|
the text token input |
|
""" |
|
if device is None: |
|
if audio is not None: |
|
device = audio.device |
|
elif text is not None: |
|
device = text.device |
|
if audio is None and text is None: |
|
|
|
return self.logit_scale_a.exp(), self.logit_scale_t.exp() |
|
elif audio is None: |
|
return self.encode_text(text, device=device) |
|
elif text is None: |
|
return self.audio_projection( |
|
self.encode_audio(audio, device=device)["embedding"] |
|
) |
|
audio_features = self.audio_projection( |
|
self.encode_audio(audio, device=device)["embedding"] |
|
) |
|
audio_features = F.normalize(audio_features, dim=-1) |
|
|
|
text_features = self.encode_text(text, device=device) |
|
|
|
|
|
|
|
text_features = F.normalize(text_features, dim=-1) |
|
|
|
audio_features_mlp = self.audio_transform(audio_features) |
|
text_features_mlp = self.text_transform(text_features) |
|
|
|
return ( |
|
audio_features, |
|
text_features, |
|
audio_features_mlp, |
|
text_features_mlp, |
|
self.logit_scale_a.exp(), |
|
self.logit_scale_t.exp(), |
|
) |
|
|
|
def get_logit_scale(self): |
|
return self.logit_scale_a.exp(), self.logit_scale_t.exp() |
|
|
|
def get_text_embedding(self, data): |
|
"""Get the text embedding from the model |
|
|
|
Parameters |
|
---------- |
|
data: torch.Tensor |
|
a tensor of text embedding |
|
|
|
Returns |
|
---------- |
|
text_embed: torch.Tensor |
|
a tensor of text_embeds (N, D) |
|
|
|
""" |
|
device = next(self.parameters()).device |
|
for k in data: |
|
data[k] = data[k].to(device) |
|
text_embeds = self.encode_text(data, device=device) |
|
text_embeds = F.normalize(text_embeds, dim=-1) |
|
|
|
return text_embeds |
|
|
|
def get_audio_embedding(self, data): |
|
"""Get the audio embedding from the model |
|
|
|
Parameters |
|
---------- |
|
data: a list of dict |
|
the audio input dict list from 'get_audio_feature' method |
|
|
|
Returns |
|
---------- |
|
audio_embed: torch.Tensor |
|
a tensor of audio_embeds (N, D) |
|
|
|
""" |
|
device = next(self.parameters()).device |
|
|
|
|
|
|
|
|
|
|
|
|
|
audio_embeds = self.audio_projection( |
|
self.encode_audio(data, device=device)["embedding"] |
|
) |
|
audio_embeds = F.normalize(audio_embeds, dim=-1) |
|
|
|
return audio_embeds |
|
|
|
def audio_infer(self, audio, hopsize=None, device=None): |
|
"""Forward one audio and produce the audio embedding |
|
|
|
Parameters |
|
---------- |
|
audio: (audio_length) |
|
the time-domain audio input, notice that it must be only one input |
|
hopsize: int |
|
the overlap hopsize as the sliding window |
|
|
|
Returns |
|
---------- |
|
output_dict: { |
|
key: [n, (embedding_shape)] if "HTS-AT" |
|
or |
|
key: [(embedding_shape)] if "PANN" |
|
} |
|
the list of key values of the audio branch |
|
|
|
""" |
|
|
|
assert not self.training, "the inference mode must be run at eval stage" |
|
output_dict = {} |
|
|
|
if self.audio_cfg.model_type == "PANN": |
|
audio_input = audio.unsqueeze(dim=0) |
|
output_dict[key] = self.encode_audio(audio_input, device=device)[ |
|
key |
|
].squeeze(dim=0) |
|
elif self.audio_cfg.model_type == "HTSAT": |
|
|
|
audio_len = len(audio) |
|
k = self.audio_cfg.clip_samples // audio_len |
|
if k > 1: |
|
audio = audio.repeat(k) |
|
audio_len = len(audio) |
|
|
|
if hopsize is None: |
|
hopsize = min(hopsize, audio_len) |
|
|
|
if audio_len > self.audio_cfg.clip_samples: |
|
audio_input = [ |
|
audio[pos : pos + self.audio_cfg.clip_samples].clone() |
|
for pos in range( |
|
0, audio_len - self.audio_cfg.clip_samples, hopsize |
|
) |
|
] |
|
audio_input.append(audio[-self.audio_cfg.clip_samples :].clone()) |
|
audio_input = torch.stack(audio_input) |
|
output_dict[key] = self.encode_audio(audio_input, device=device)[key] |
|
else: |
|
audio_input = audio.unsqueeze(dim=0) |
|
output_dict[key] = self.encode_audio(audio_input, device=device)[ |
|
key |
|
].squeeze(dim=0) |
|
|
|
return output_dict |
|
|
|
|
|
def convert_weights_to_fp16(model: nn.Module): |
|
"""Convert applicable model parameters to fp16""" |
|
|
|
def _convert_weights_to_fp16(l): |
|
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): |
|
l.weight.data = l.weight.data.half() |
|
if l.bias is not None: |
|
l.bias.data = l.bias.data.half() |
|
|
|
if isinstance(l, nn.MultiheadAttention): |
|
for attr in [ |
|
*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], |
|
"in_proj_bias", |
|
"bias_k", |
|
"bias_v", |
|
]: |
|
tensor = getattr(l, attr) |
|
if tensor is not None: |
|
tensor.data = tensor.data.half() |
|
|
|
for name in ["text_projection", "proj"]: |
|
if hasattr(l, name): |
|
attr = getattr(l, name) |
|
if attr is not None: |
|
attr.data = attr.data.half() |
|
|
|
model.apply(_convert_weights_to_fp16) |
|
|
|
|
|
|
|
def build_model_from_openai_state_dict( |
|
state_dict: dict, model_cfg, enable_fusion: bool = False, fusion_type: str = "None" |
|
): |
|
embed_dim = model_cfg["embed_dim"] |
|
audio_cfg = model_cfg["audio_cfg"] |
|
text_cfg = model_cfg["text_cfg"] |
|
context_length = state_dict["positional_embedding"].shape[0] |
|
vocab_size = state_dict["token_embedding.weight"].shape[0] |
|
transformer_width = state_dict["ln_final.weight"].shape[0] |
|
transformer_heads = transformer_width // 64 |
|
transformer_layers = len( |
|
set( |
|
k.split(".")[2] |
|
for k in state_dict |
|
if k.startswith(f"transformer.resblocks") |
|
) |
|
) |
|
|
|
audio_cfg = CLAPAudioCfp(**audio_cfg) |
|
text_cfg = CLAPTextCfg(**text_cfg) |
|
|
|
model = CLAP( |
|
embed_dim, |
|
audio_cfg=audio_cfg, |
|
text_cfg=text_cfg, |
|
quick_gelu=True, |
|
enable_fusion=enable_fusion, |
|
fusion_type=fusion_type, |
|
) |
|
state_dict["logit_scale_a"] = state_dict["logit_scale"] |
|
state_dict["logit_scale_t"] = state_dict["logit_scale"] |
|
pop_keys = list(state_dict.keys())[::] |
|
|
|
for key in pop_keys: |
|
if key.startswith("visual."): |
|
state_dict.pop(key, None) |
|
|
|
for key in ["logit_scale", "input_resolution", "context_length", "vocab_size"]: |
|
state_dict.pop(key, None) |
|
|
|
|
|
|
|
model.load_state_dict(state_dict, strict=False) |
|
return model.eval() |
|
|
|
|
|
def trace_model(model, batch_size=256, device=torch.device("cpu")): |
|
model.eval() |
|
audio_length = model.audio_cfg.audio_length |
|
example_audio = torch.ones((batch_size, audio_length), device=device) |
|
example_text = torch.zeros( |
|
(batch_size, model.context_length), dtype=torch.int, device=device |
|
) |
|
model = torch.jit.trace_module( |
|
model, |
|
inputs=dict( |
|
forward=(example_audio, example_text), |
|
encode_text=(example_text,), |
|
encode_image=(example_audio,), |
|
), |
|
) |
|
model.audio_cfg.audio_length = audio_length |
|
return model |
|
|