|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
|
|
import torch |
|
|
|
from torchvision import transforms |
|
from torchvision.transforms import functional as F |
|
|
|
|
|
class RandomResizedCrop(transforms.RandomResizedCrop): |
|
""" |
|
RandomResizedCrop for matching TF/TPU implementation: no for-loop is used. |
|
This may lead to results different with torchvision's version. |
|
Following BYOL's TF code: |
|
https://github.com/deepmind/deepmind-research/blob/master/byol/utils/dataset.py#L206 |
|
""" |
|
|
|
@staticmethod |
|
def get_params(img, scale, ratio): |
|
width, height = F._get_image_size(img) |
|
area = height * width |
|
|
|
target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item() |
|
log_ratio = torch.log(torch.tensor(ratio)) |
|
aspect_ratio = torch.exp( |
|
torch.empty(1).uniform_(log_ratio[0], log_ratio[1]) |
|
).item() |
|
|
|
w = int(round(math.sqrt(target_area * aspect_ratio))) |
|
h = int(round(math.sqrt(target_area / aspect_ratio))) |
|
|
|
w = min(w, width) |
|
h = min(h, height) |
|
|
|
i = torch.randint(0, height - h + 1, size=(1,)).item() |
|
j = torch.randint(0, width - w + 1, size=(1,)).item() |
|
|
|
return i, j, h, w |
|
|