File size: 23,477 Bytes
9b9e0ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
import sys

sys.path.append("src")
import os
import pandas as pd
import yaml
import qa_mdt.audioldm_train.utilities.audio as Audio
from qa_mdt.audioldm_train.utilities.tools import load_json
from qa_mdt.audioldm_train.dataset_plugin import *
from librosa.filters import mel as librosa_mel_fn

import random
from torch.utils.data import Dataset
import torch.nn.functional
import torch
import numpy as np
import torchaudio
import json


def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
    return torch.log(torch.clamp(x, min=clip_val) * C)


def dynamic_range_decompression_torch(x, C=1):
    return torch.exp(x) / C


def spectral_normalize_torch(magnitudes):
    output = dynamic_range_compression_torch(magnitudes)
    return output


def spectral_de_normalize_torch(magnitudes):
    output = dynamic_range_decompression_torch(magnitudes)
    return output


class AudioDataset(Dataset):
    def __init__(
        self,
        config=None,
        split="train",
        waveform_only=False,
        add_ons=[],
        dataset_json=None,
    ):
        """
        Dataset that manages audio recordings
        :param audio_conf: Dictionary containing the audio loading and preprocessing settings
        :param dataset_json_file
        """
        self.config = config
        self.split = split
        self.pad_wav_start_sample = 0  # If none, random choose
        self.trim_wav = False
        self.waveform_only = waveform_only
        self.add_ons = [eval(x) for x in add_ons]
        print("Add-ons:", self.add_ons)

        self.build_setting_parameters()

        # For an external dataset
        if dataset_json is not None:
            self.data = dataset_json["data"]
            self.id2label, self.index_dict, self.num2label = {}, {}, {}
        else:
            self.metadata_root = load_json(self.config["metadata_root"])
            self.dataset_name = self.config["data"][self.split]
            assert split in self.config["data"].keys(), (
                "The dataset split %s you specified is not present in the config. You can choose from %s"
                % (split, self.config["data"].keys())
            )
            self.build_dataset()
            self.build_id_to_label()

        self.build_dsp()
        self.label_num = len(self.index_dict)
        print("Dataset initialize finished")

    def __getitem__(self, index):
        (
            fname,
            waveform,
            stft,
            log_mel_spec,
            label_vector,  # the one-hot representation of the audio class
            # the metadata of the sampled audio file and the mixup audio file (if exist)
            (datum, mix_datum),
            random_start,
        ) = self.feature_extraction(index)
        text = self.get_sample_text_caption(datum, mix_datum, label_vector)

        data = {
            "text": text,  # list
            "fname": self.text_to_filename(text) if (not fname) else fname,  # list
            # tensor, [batchsize, class_num]
            "label_vector": "" if (label_vector is None) else label_vector.float(),
            # tensor, [batchsize, 1, samples_num]
            "waveform": "" if (waveform is None) else waveform.float(),
            # tensor, [batchsize, t-steps, f-bins]
            "stft": "" if (stft is None) else stft.float(),
            # tensor, [batchsize, t-steps, mel-bins]
            "log_mel_spec": "" if (log_mel_spec is None) else log_mel_spec.float(),
            "duration": self.duration,
            "sampling_rate": self.sampling_rate,
            "random_start_sample_in_original_audio_file": random_start,
        }

        for add_on in self.add_ons:
            data.update(add_on(self.config, data, self.data[index]))

        if data["text"] is None:
            print("Warning: The model return None on key text", fname)
            data["text"] = ""

        return data

    def text_to_filename(self, text):
        return text.replace(" ", "_").replace("'", "_").replace('"', "_")

    def get_dataset_root_path(self, dataset):
        assert dataset in self.metadata_root.keys()
        return self.metadata_root[dataset]

    def get_dataset_metadata_path(self, dataset, key):
        # key: train, test, val, class_label_indices
        try:
            if dataset in self.metadata_root["metadata"]["path"].keys():
                return self.metadata_root["metadata"]["path"][dataset][key]
        except:
            raise ValueError(
                'Dataset %s does not metadata "%s" specified' % (dataset, key)
            )

    def __len__(self):
        return len(self.data)

    def feature_extraction(self, index):
        if index > len(self.data) - 1:
            print(
                "The index of the dataloader is out of range: %s/%s"
                % (index, len(self.data))
            )
            index = random.randint(0, len(self.data) - 1)

        # Read wave file and extract feature
        while True:
            try:
                label_indices = np.zeros(self.label_num, dtype=np.float32)
                datum = self.data[index]
                (
                    log_mel_spec,
                    stft,
                    waveform,
                    random_start,
                ) = self.read_audio_file(datum["wav"])
                mix_datum = None
                if self.label_num > 0 and "labels" in datum.keys():
                    for label_str in datum["labels"].split(","):
                        label_indices[int(self.index_dict[label_str])] = 1.0

                # If the key "label" is not in the metadata, return all zero vector
                label_indices = torch.FloatTensor(label_indices)
                break
            except Exception as e:
                index = (index + 1) % len(self.data)
                print(
                    "Error encounter during audio feature extraction: ", e, datum["wav"]
                )
                continue

        # The filename of the wav file
        fname = datum["wav"]
        # t_step = log_mel_spec.size(0)
        # waveform = torch.FloatTensor(waveform[..., : int(self.hopsize * t_step)])
        waveform = torch.FloatTensor(waveform)

        return (
            fname,
            waveform,
            stft,
            log_mel_spec,
            label_indices,
            (datum, mix_datum),
            random_start,
        )

    # def augmentation(self, log_mel_spec):
    #     assert torch.min(log_mel_spec) < 0
    #     log_mel_spec = log_mel_spec.exp()

    #     log_mel_spec = torch.transpose(log_mel_spec, 0, 1)
    #     # this is just to satisfy new torchaudio version.
    #     log_mel_spec = log_mel_spec.unsqueeze(0)
    #     if self.freqm != 0:
    #         log_mel_spec = self.frequency_masking(log_mel_spec, self.freqm)
    #     if self.timem != 0:
    #         log_mel_spec = self.time_masking(
    #             log_mel_spec, self.timem)  # self.timem=0

    #     log_mel_spec = (log_mel_spec + 1e-7).log()
    #     # squeeze back
    #     log_mel_spec = log_mel_spec.squeeze(0)
    #     log_mel_spec = torch.transpose(log_mel_spec, 0, 1)
    #     return log_mel_spec

    def build_setting_parameters(self):
        # Read from the json config
        self.melbins = self.config["preprocessing"]["mel"]["n_mel_channels"]
        # self.freqm = self.config["preprocessing"]["mel"]["freqm"]
        # self.timem = self.config["preprocessing"]["mel"]["timem"]
        self.sampling_rate = self.config["preprocessing"]["audio"]["sampling_rate"]
        self.hopsize = self.config["preprocessing"]["stft"]["hop_length"]
        self.duration = self.config["preprocessing"]["audio"]["duration"]
        self.target_length = int(self.duration * self.sampling_rate / self.hopsize)

        self.mixup = self.config["augmentation"]["mixup"]

        # Calculate parameter derivations
        # self.waveform_sample_length = int(self.target_length * self.hopsize)

        # if (self.config["balance_sampling_weight"]):
        #     self.samples_weight = np.loadtxt(
        #         self.config["balance_sampling_weight"], delimiter=","
        #     )

        if "train" not in self.split:
            self.mixup = 0.0
            # self.freqm = 0
            # self.timem = 0

    def _relative_path_to_absolute_path(self, metadata, dataset_name):
        root_path = self.get_dataset_root_path(dataset_name)
        for i in range(len(metadata["data"])):
            assert "wav" in metadata["data"][i].keys(), metadata["data"][i]
            assert metadata["data"][i]["wav"][0] != "/", (
                "The dataset metadata should only contain relative path to the audio file: "
                + str(metadata["data"][i]["wav"])
            )
            metadata["data"][i]["wav"] = os.path.join(
                root_path, metadata["data"][i]["wav"]
            )
        return metadata

    def build_dataset(self):
        self.data = []
        print("Build dataset split %s from %s" % (self.split, self.dataset_name))
        if type(self.dataset_name) is str:
            data_json = load_json(
                self.get_dataset_metadata_path(self.dataset_name, key=self.split)
            )
            data_json = self._relative_path_to_absolute_path(
                data_json, self.dataset_name
            )
            self.data = data_json["data"]
        elif type(self.dataset_name) is list:
            for dataset_name in self.dataset_name:
                data_json = load_json(
                    self.get_dataset_metadata_path(dataset_name, key=self.split)
                )
                data_json = self._relative_path_to_absolute_path(
                    data_json, dataset_name
                )
                self.data += data_json["data"]
        else:
            raise Exception("Invalid data format")
        print("Data size: {}".format(len(self.data)))

    def build_dsp(self):
        self.mel_basis = {}
        self.hann_window = {}

        self.filter_length = self.config["preprocessing"]["stft"]["filter_length"]
        self.hop_length = self.config["preprocessing"]["stft"]["hop_length"]
        self.win_length = self.config["preprocessing"]["stft"]["win_length"]
        self.n_mel = self.config["preprocessing"]["mel"]["n_mel_channels"]
        self.sampling_rate = self.config["preprocessing"]["audio"]["sampling_rate"]
        self.mel_fmin = self.config["preprocessing"]["mel"]["mel_fmin"]
        self.mel_fmax = self.config["preprocessing"]["mel"]["mel_fmax"]

        self.STFT = Audio.stft.TacotronSTFT(
            self.config["preprocessing"]["stft"]["filter_length"],
            self.config["preprocessing"]["stft"]["hop_length"],
            self.config["preprocessing"]["stft"]["win_length"],
            self.config["preprocessing"]["mel"]["n_mel_channels"],
            self.config["preprocessing"]["audio"]["sampling_rate"],
            self.config["preprocessing"]["mel"]["mel_fmin"],
            self.config["preprocessing"]["mel"]["mel_fmax"],
        )
        # self.stft_transform = torchaudio.transforms.Spectrogram(
        #     n_fft=1024, hop_length=160
        # )
        # self.melscale_transform = torchaudio.transforms.MelScale(
        #     sample_rate=16000, n_stft=1024 // 2 + 1, n_mels=64
        # )

    def build_id_to_label(self):
        id2label = {}
        id2num = {}
        num2label = {}
        class_label_indices_path = self.get_dataset_metadata_path(
            dataset=self.config["data"]["class_label_indices"],
            key="class_label_indices",
        )
        if class_label_indices_path is not None:
            df = pd.read_csv(class_label_indices_path)
            for _, row in df.iterrows():
                index, mid, display_name = row["index"], row["mid"], row["display_name"]
                id2label[mid] = display_name
                id2num[mid] = index
                num2label[index] = display_name
            self.id2label, self.index_dict, self.num2label = id2label, id2num, num2label
        else:
            self.id2label, self.index_dict, self.num2label = {}, {}, {}

    def resample(self, waveform, sr):
        waveform = torchaudio.functional.resample(waveform, sr, self.sampling_rate)
        return waveform

    def normalize_wav(self, waveform):
        waveform = waveform - np.mean(waveform)
        waveform = waveform / (np.max(np.abs(waveform)) + 1e-8)
        return waveform * 0.5  # Manually limit the maximum amplitude into 0.5

    def random_segment_wav(self, waveform, target_length):
        waveform_length = waveform.shape[-1]
        assert waveform_length > 100, "Waveform is too short, %s" % waveform_length

        # Too short
        if (waveform_length - target_length) <= 0:
            return waveform, 0

        for i in range(10):
            random_start = int(self.random_uniform(0, waveform_length - target_length))
            if torch.max(
                torch.abs(waveform[:, random_start : random_start + target_length])
                > 1e-4
            ):
                break

        return waveform[:, random_start : random_start + target_length], random_start

    def pad_wav(self, waveform, target_length):
        waveform_length = waveform.shape[-1]
        assert waveform_length > 100, "Waveform is too short, %s" % waveform_length

        if waveform_length == target_length:
            return waveform

        # Pad
        temp_wav = np.zeros((1, target_length), dtype=np.float32)
        if self.pad_wav_start_sample is None:
            rand_start = int(self.random_uniform(0, target_length - waveform_length))
        else:
            rand_start = 0

        temp_wav[:, rand_start : rand_start + waveform_length] = waveform
        return temp_wav

    def trim_wav(self, waveform):
        if np.max(np.abs(waveform)) < 0.0001:
            return waveform

        def detect_leading_silence(waveform, threshold=0.0001):
            chunk_size = 1000
            waveform_length = waveform.shape[0]
            start = 0
            while start + chunk_size < waveform_length:
                if np.max(np.abs(waveform[start : start + chunk_size])) < threshold:
                    start += chunk_size
                else:
                    break
            return start

        def detect_ending_silence(waveform, threshold=0.0001):
            chunk_size = 1000
            waveform_length = waveform.shape[0]
            start = waveform_length
            while start - chunk_size > 0:
                if np.max(np.abs(waveform[start - chunk_size : start])) < threshold:
                    start -= chunk_size
                else:
                    break
            if start == waveform_length:
                return start
            else:
                return start + chunk_size

        start = detect_leading_silence(waveform)
        end = detect_ending_silence(waveform)

        return waveform[start:end]

    def read_wav_file(self, filename):
        # waveform, sr = librosa.load(filename, sr=None, mono=True) # 4 times slower
        waveform, sr = torchaudio.load(filename)

        waveform, random_start = self.random_segment_wav(
            waveform, target_length=int(sr * self.duration)
        )

        waveform = self.resample(waveform, sr)
        # random_start = int(random_start * (self.sampling_rate / sr))

        waveform = waveform.numpy()[0, ...]

        waveform = self.normalize_wav(waveform)

        if self.trim_wav:
            waveform = self.trim_wav(waveform)

        waveform = waveform[None, ...]
        waveform = self.pad_wav(
            waveform, target_length=int(self.sampling_rate * self.duration)
        )
        return waveform, random_start

    def read_audio_file(self, filename, filename2=None):
        if os.path.exists(filename):
            waveform, random_start = self.read_wav_file(filename)
        else:
            print(
                'Non-fatal Warning [dataset.py]: The wav path "',
                filename,
                '" is not find in the metadata. Use empty waveform instead. This is normal in the inference process.',
            )
            target_length = int(self.sampling_rate * self.duration)
            waveform = torch.zeros((1, target_length))
            random_start = 0

        # log_mel_spec, stft = self.wav_feature_extraction_torchaudio(waveform) # this line is faster, but this implementation is not aligned with HiFi-GAN
        if not self.waveform_only:
            log_mel_spec, stft = self.wav_feature_extraction(waveform)
        else:
            # Load waveform data only
            # Use zero array to keep the format unified
            log_mel_spec, stft = None, None

        return log_mel_spec, stft, waveform, random_start

    def get_sample_text_caption(self, datum, mix_datum, label_indices):
        text = self.label_indices_to_text(datum, label_indices)
        if mix_datum is not None:
            text += " " + self.label_indices_to_text(mix_datum, label_indices)
        return text

    def mel_spectrogram_train(self, y):
        if torch.min(y) < -1.0:
            print("train min value is ", torch.min(y))
        if torch.max(y) > 1.0:
            print("train max value is ", torch.max(y))

        if self.mel_fmax not in self.mel_basis:
            mel = librosa_mel_fn(
                self.sampling_rate,
                self.filter_length,
                self.n_mel,
                self.mel_fmin,
                self.mel_fmax,
            )
            self.mel_basis[str(self.mel_fmax) + "_" + str(y.device)] = (
                torch.from_numpy(mel).float().to(y.device)
            )
            self.hann_window[str(y.device)] = torch.hann_window(self.win_length).to(
                y.device
            )

        y = torch.nn.functional.pad(
            y.unsqueeze(1),
            (
                int((self.filter_length - self.hop_length) / 2),
                int((self.filter_length - self.hop_length) / 2),
            ),
            mode="reflect",
        )

        y = y.squeeze(1)

        stft_spec = torch.stft(
            y,
            self.filter_length,
            hop_length=self.hop_length,
            win_length=self.win_length,
            window=self.hann_window[str(y.device)],
            center=False,
            pad_mode="reflect",
            normalized=False,
            onesided=True,
            return_complex=True,
        )

        stft_spec = torch.abs(stft_spec)

        mel = spectral_normalize_torch(
            torch.matmul(
                self.mel_basis[str(self.mel_fmax) + "_" + str(y.device)], stft_spec
            )
        )

        return mel[0], stft_spec[0]

    # This one is significantly slower than "wav_feature_extraction_torchaudio" if num_worker > 1
    def wav_feature_extraction(self, waveform):
        waveform = waveform[0, ...]
        waveform = torch.FloatTensor(waveform)

        # log_mel_spec, stft, energy = Audio.tools.get_mel_from_wav(waveform, self.STFT)[0]
        log_mel_spec, stft = self.mel_spectrogram_train(waveform.unsqueeze(0))

        log_mel_spec = torch.FloatTensor(log_mel_spec.T)
        stft = torch.FloatTensor(stft.T)

        log_mel_spec, stft = self.pad_spec(log_mel_spec), self.pad_spec(stft)
        return log_mel_spec, stft

    # @profile
    # def wav_feature_extraction_torchaudio(self, waveform):
    #     waveform = waveform[0, ...]
    #     waveform = torch.FloatTensor(waveform)

    #     stft = self.stft_transform(waveform)
    #     mel_spec = self.melscale_transform(stft)
    #     log_mel_spec = torch.log(mel_spec + 1e-7)

    #     log_mel_spec = torch.FloatTensor(log_mel_spec.T)
    #     stft = torch.FloatTensor(stft.T)

    #     log_mel_spec, stft = self.pad_spec(log_mel_spec), self.pad_spec(stft)
    #     return log_mel_spec, stft

    def pad_spec(self, log_mel_spec):
        n_frames = log_mel_spec.shape[0]
        p = self.target_length - n_frames
        # cut and pad
        if p > 0:
            m = torch.nn.ZeroPad2d((0, 0, 0, p))
            log_mel_spec = m(log_mel_spec)
        elif p < 0:
            log_mel_spec = log_mel_spec[0 : self.target_length, :]

        if log_mel_spec.size(-1) % 2 != 0:
            log_mel_spec = log_mel_spec[..., :-1]

        return log_mel_spec

    def _read_datum_caption(self, datum):
        caption_keys = [x for x in datum.keys() if ("caption" in x)]
        random_index = torch.randint(0, len(caption_keys), (1,))[0].item()
        return datum[caption_keys[random_index]]

    def _is_contain_caption(self, datum):
        caption_keys = [x for x in datum.keys() if ("caption" in x)]
        return len(caption_keys) > 0

    def label_indices_to_text(self, datum, label_indices):
        if self._is_contain_caption(datum):
            return self._read_datum_caption(datum)
        elif "label" in datum.keys():
            name_indices = torch.where(label_indices > 0.1)[0]
            # description_header = "This audio contains the sound of "
            description_header = ""
            labels = ""
            for id, each in enumerate(name_indices):
                if id == len(name_indices) - 1:
                    labels += "%s." % self.num2label[int(each)]
                else:
                    labels += "%s, " % self.num2label[int(each)]
            return description_header + labels
        else:
            return ""  # TODO, if both label and caption are not provided, return empty string

    def random_uniform(self, start, end):
        val = torch.rand(1).item()
        return start + (end - start) * val

    def frequency_masking(self, log_mel_spec, freqm):
        bs, freq, tsteps = log_mel_spec.size()
        mask_len = int(self.random_uniform(freqm // 8, freqm))
        mask_start = int(self.random_uniform(start=0, end=freq - mask_len))
        log_mel_spec[:, mask_start : mask_start + mask_len, :] *= 0.0
        return log_mel_spec

    def time_masking(self, log_mel_spec, timem):
        bs, freq, tsteps = log_mel_spec.size()
        mask_len = int(self.random_uniform(timem // 8, timem))
        mask_start = int(self.random_uniform(start=0, end=tsteps - mask_len))
        log_mel_spec[:, :, mask_start : mask_start + mask_len] *= 0.0
        return log_mel_spec


if __name__ == "__main__":
    import torch
    from tqdm import tqdm
    from pytorch_lightning import seed_everything
    from torch.utils.data import DataLoader

    seed_everything(0)

    def write_json(my_dict, fname):
        # print("Save json file at "+fname)
        json_str = json.dumps(my_dict)
        with open(fname, "w") as json_file:
            json_file.write(json_str)

    def load_json(fname):
        with open(fname, "r") as f:
            data = json.load(f)
            return data

    config = yaml.load(
        open(
            "/mnt/bn/lqhaoheliu/project/audio_generation_diffusion/config/vae_48k_256/ds_8_kl_1.0_ch_16.yaml",
            "r",
        ),
        Loader=yaml.FullLoader,
    )

    add_ons = config["data"]["dataloader_add_ons"]

    # load_json(data)
    dataset = AudioDataset(
        config=config, split="train", waveform_only=False, add_ons=add_ons
    )

    loader = DataLoader(dataset, batch_size=1, num_workers=0, shuffle=True)

    for cnt, each in tqdm(enumerate(loader)):
        # print(each["waveform"].size(), each["log_mel_spec"].size())
        # print(each['freq_energy_percentile'])
        import ipdb

        ipdb.set_trace()
        # pass