File size: 20,729 Bytes
9b9e0ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
from email.policy import strict
import torch
import os

import pytorch_lightning as pl
import torch.nn.functional as F
from contextlib import contextmanager
import numpy as np
from qa_mdt.audioldm_train.modules.diffusionmodules.ema import *

from torch.optim.lr_scheduler import LambdaLR
from qa_mdt.audioldm_train.modules.diffusionmodules.model import Encoder, Decoder
from qa_mdt.audioldm_train.modules.diffusionmodules.distributions import (
    DiagonalGaussianDistribution,
)

import wandb
from qa_mdt.audioldm_train.utilities.model_util import instantiate_from_config
import soundfile as sf

from qa_mdt.audioldm_train.utilities.model_util import get_vocoder
from qa_mdt.audioldm_train.utilities.tools import synth_one_sample
import itertools


class AutoencoderKL(pl.LightningModule):
    def __init__(
        self,
        ddconfig=None,
        lossconfig=None,
        batchsize=None,
        embed_dim=None,
        time_shuffle=1,
        subband=1,
        sampling_rate=16000,
        ckpt_path=None,
        reload_from_ckpt=None,
        ignore_keys=[],
        image_key="fbank",
        colorize_nlabels=None,
        monitor=None,
        base_learning_rate=1e-5,
    ):
        super().__init__()
        self.automatic_optimization = False
        assert (
            "mel_bins" in ddconfig.keys()
        ), "mel_bins is not specified in the Autoencoder config"
        num_mel = ddconfig["mel_bins"]
        self.image_key = image_key
        self.sampling_rate = sampling_rate
        self.encoder = Encoder(**ddconfig)
        self.decoder = Decoder(**ddconfig)

        self.loss = instantiate_from_config(lossconfig)
        self.subband = int(subband)

        if self.subband > 1:
            print("Use subband decomposition %s" % self.subband)

        assert ddconfig["double_z"]
        self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1)
        self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)

        if self.image_key == "fbank":
            self.vocoder = get_vocoder(None, "cpu", num_mel)
        self.embed_dim = embed_dim
        if colorize_nlabels is not None:
            assert type(colorize_nlabels) == int
            self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
        if monitor is not None:
            self.monitor = monitor
        if ckpt_path is not None:
            self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
        self.learning_rate = float(base_learning_rate)
        print("Initial learning rate %s" % self.learning_rate)

        self.time_shuffle = time_shuffle
        self.reload_from_ckpt = reload_from_ckpt
        self.reloaded = False
        self.mean, self.std = None, None

        self.feature_cache = None
        self.flag_first_run = True
        self.train_step = 0

        self.logger_save_dir = None
        self.logger_exp_name = None
        self.logger_exp_group_name = None

        if not self.reloaded and self.reload_from_ckpt is not None:
            # import pdb 
            # pdb.set_trace()
            print("--> Reload weight of autoencoder from %s" % self.reload_from_ckpt)
            checkpoint = torch.load(self.reload_from_ckpt)

            load_todo_keys = {}
            pretrained_state_dict = checkpoint["state_dict"]
            current_state_dict = self.state_dict()
            for key in current_state_dict:
                if (
                    key in pretrained_state_dict.keys()
                    and pretrained_state_dict[key].size()
                    == current_state_dict[key].size()
                ):
                    load_todo_keys[key] = pretrained_state_dict[key]
                else:
                    print("Key %s mismatch during loading, seems fine" % key)

            self.load_state_dict(load_todo_keys, strict=False)
            self.reloaded = True
        else:
            print("Train from scratch")

    def get_log_dir(self):
        return os.path.join(
            self.logger_save_dir, self.logger_exp_group_name, self.logger_exp_name
        )

    def set_log_dir(self, save_dir, exp_group_name, exp_name):
        self.logger_save_dir = save_dir
        self.logger_exp_name = exp_name
        self.logger_exp_group_name = exp_group_name

    def init_from_ckpt(self, path, ignore_keys=list()):
        sd = torch.load(path, map_location="cpu")["state_dict"]
        keys = list(sd.keys())
        for k in keys:
            for ik in ignore_keys:
                if k.startswith(ik):
                    print("Deleting key {} from state_dict.".format(k))
                    del sd[k]
        self.load_state_dict(sd, strict=False)
        print(f"Restored from {path}")

    def encode(self, x):
        # x = self.time_shuffle_operation(x)
        x = self.freq_split_subband(x)
        h = self.encoder(x)
        moments = self.quant_conv(h)
        posterior = DiagonalGaussianDistribution(moments)
        return posterior

    def decode(self, z):
        z = self.post_quant_conv(z)
        dec = self.decoder(z)
        # bs, ch, shuffled_timesteps, fbins = dec.size()
        # dec = self.time_unshuffle_operation(dec, bs, int(ch*shuffled_timesteps), fbins)
        dec = self.freq_merge_subband(dec)
        return dec

    def decode_to_waveform(self, dec):
        from qa_mdt.audioldm_train.utilities.model_util import vocoder_infer

        if self.image_key == "fbank":
            dec = dec.squeeze(1).permute(0, 2, 1)
            wav_reconstruction = vocoder_infer(dec, self.vocoder)
        elif self.image_key == "stft":
            dec = dec.squeeze(1).permute(0, 2, 1)
            wav_reconstruction = self.wave_decoder(dec)
        return wav_reconstruction

    def visualize_latent(self, input):
        import matplotlib.pyplot as plt

        # for i in range(10):
        #     zero_input = torch.zeros_like(input) - 11.59
        #     zero_input[:,:,i * 16: i * 16 + 16,:16] += 13.59

        #     posterior = self.encode(zero_input)
        #     latent = posterior.sample()
        #     avg_latent = torch.mean(latent, dim=1)[0]
        #     plt.imshow(avg_latent.cpu().detach().numpy().T)
        #     plt.savefig("%s.png" % i)
        #     plt.close()

        np.save("input.npy", input.cpu().detach().numpy())
        # zero_input = torch.zeros_like(input) - 11.59
        time_input = input.clone()
        time_input[:, :, :, :32] *= 0
        time_input[:, :, :, :32] -= 11.59

        np.save("time_input.npy", time_input.cpu().detach().numpy())

        posterior = self.encode(time_input)
        latent = posterior.sample()
        np.save("time_latent.npy", latent.cpu().detach().numpy())
        avg_latent = torch.mean(latent, dim=1)
        for i in range(avg_latent.size(0)):
            plt.imshow(avg_latent[i].cpu().detach().numpy().T)
            plt.savefig("freq_%s.png" % i)
            plt.close()

        freq_input = input.clone()
        freq_input[:, :, :512, :] *= 0
        freq_input[:, :, :512, :] -= 11.59

        np.save("freq_input.npy", freq_input.cpu().detach().numpy())

        posterior = self.encode(freq_input)
        latent = posterior.sample()
        np.save("freq_latent.npy", latent.cpu().detach().numpy())
        avg_latent = torch.mean(latent, dim=1)
        for i in range(avg_latent.size(0)):
            plt.imshow(avg_latent[i].cpu().detach().numpy().T)
            plt.savefig("time_%s.png" % i)
            plt.close()

    def forward(self, input, sample_posterior=True):
        posterior = self.encode(input)
        if sample_posterior:
            z = posterior.sample()
        else:
            z = posterior.mode()

        if self.flag_first_run:
            print("Latent size: ", z.size())
            self.flag_first_run = False

        dec = self.decode(z)

        return dec, posterior

    def get_input(self, batch):
        fname, text, label_indices, waveform, stft, fbank = (
            batch["fname"],
            batch["text"],
            batch["label_vector"],
            batch["waveform"],
            batch["stft"],
            batch["log_mel_spec"],
        )
        # if(self.time_shuffle != 1):
        #     if(fbank.size(1) % self.time_shuffle != 0):
        #         pad_len = self.time_shuffle - (fbank.size(1) % self.time_shuffle)
        #         fbank = torch.nn.functional.pad(fbank, (0,0,0,pad_len))

        ret = {}

        ret["fbank"], ret["stft"], ret["fname"], ret["waveform"] = (
            fbank.unsqueeze(1),
            stft.unsqueeze(1),
            fname,
            waveform.unsqueeze(1),
        )

        return ret

    # def time_shuffle_operation(self, fbank):
    #     if(self.time_shuffle == 1):
    #         return fbank

    #     shuffled_fbank = []
    #     for i in range(self.time_shuffle):
    #         shuffled_fbank.append(fbank[:,:, i::self.time_shuffle,:])
    #     return torch.cat(shuffled_fbank, dim=1)

    # def time_unshuffle_operation(self, shuffled_fbank, bs, timesteps, fbins):
    #     if(self.time_shuffle == 1):
    #         return shuffled_fbank

    #     buffer = torch.zeros((bs, 1, timesteps, fbins)).to(shuffled_fbank.device)
    #     for i in range(self.time_shuffle):
    #         buffer[:,0,i::self.time_shuffle,:] = shuffled_fbank[:,i,:,:]
    #     return buffer

    def freq_split_subband(self, fbank):
        if self.subband == 1 or self.image_key != "stft":
            return fbank

        bs, ch, tstep, fbins = fbank.size()

        assert fbank.size(-1) % self.subband == 0
        assert ch == 1

        return (
            fbank.squeeze(1)
            .reshape(bs, tstep, self.subband, fbins // self.subband)
            .permute(0, 2, 1, 3)
        )

    def freq_merge_subband(self, subband_fbank):
        if self.subband == 1 or self.image_key != "stft":
            return subband_fbank
        assert subband_fbank.size(1) == self.subband  # Channel dimension
        bs, sub_ch, tstep, fbins = subband_fbank.size()
        return subband_fbank.permute(0, 2, 1, 3).reshape(bs, tstep, -1).unsqueeze(1)

    def training_step(self, batch, batch_idx):
        g_opt, d_opt = self.optimizers()
        inputs_dict = self.get_input(batch)
        inputs = inputs_dict[self.image_key]
        waveform = inputs_dict["waveform"]

        if batch_idx % 5000 == 0 and self.local_rank == 0:
            print("Log train image")
            self.log_images(inputs, waveform=waveform)

        reconstructions, posterior = self(inputs)

        if self.image_key == "stft":
            rec_waveform = self.decode_to_waveform(reconstructions)
        else:
            rec_waveform = None

        # train the discriminator
        # If working on waveform, inputs is STFT, reconstructions are the waveform
        # If working on the melspec, inputs is melspec, reconstruction are also mel spec
        discloss, log_dict_disc = self.loss(
            inputs=inputs,
            reconstructions=reconstructions,
            posteriors=posterior,
            waveform=waveform,
            rec_waveform=rec_waveform,
            optimizer_idx=1,
            global_step=self.global_step,
            last_layer=self.get_last_layer(),
            split="train",
        )

        self.log(
            "discloss",
            discloss,
            prog_bar=True,
            logger=True,
            on_step=True,
            on_epoch=True,
        )
        self.log_dict(
            log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False
        )
        d_opt.zero_grad()
        self.manual_backward(discloss)
        d_opt.step()

        self.log(
            "train_step",
            self.train_step,
            prog_bar=False,
            logger=False,
            on_step=True,
            on_epoch=False,
        )

        self.log(
            "global_step",
            float(self.global_step),
            prog_bar=True,
            logger=True,
            on_step=True,
            on_epoch=False,
        )

        aeloss, log_dict_ae = self.loss(
            inputs=inputs,
            reconstructions=reconstructions,
            posteriors=posterior,
            waveform=waveform,
            rec_waveform=rec_waveform,
            optimizer_idx=0,
            global_step=self.global_step,
            last_layer=self.get_last_layer(),
            split="train",
        )
        self.log(
            "aeloss",
            aeloss,
            prog_bar=True,
            logger=True,
            on_step=True,
            on_epoch=False,
        )
        self.log(
            "posterior_std",
            torch.mean(posterior.var),
            prog_bar=True,
            logger=True,
            on_step=True,
            on_epoch=False,
        )
        self.log_dict(
            log_dict_ae, prog_bar=True, logger=True, on_step=True, on_epoch=False
        )

        self.train_step += 1
        g_opt.zero_grad()
        self.manual_backward(aeloss)
        g_opt.step()

    def validation_step(self, batch, batch_idx):
        inputs_dict = self.get_input(batch)
        inputs = inputs_dict[self.image_key]
        waveform = inputs_dict["waveform"]

        if batch_idx <= 3:
            print("Log val image")
            self.log_images(inputs, train=False, waveform=waveform)

        reconstructions, posterior = self(inputs)

        if self.image_key == "stft":
            rec_waveform = self.decode_to_waveform(reconstructions)
        else:
            rec_waveform = None

        aeloss, log_dict_ae = self.loss(
            inputs=inputs,
            reconstructions=reconstructions,
            posteriors=posterior,
            waveform=waveform,
            rec_waveform=rec_waveform,
            optimizer_idx=0,
            global_step=self.global_step,
            last_layer=self.get_last_layer(),
            split="val",
        )

        discloss, log_dict_disc = self.loss(
            inputs=inputs,
            reconstructions=reconstructions,
            posteriors=posterior,
            waveform=waveform,
            rec_waveform=rec_waveform,
            optimizer_idx=1,
            global_step=self.global_step,
            last_layer=self.get_last_layer(),
            split="val",
        )

        self.log_dict(log_dict_ae)
        self.log_dict(log_dict_disc)
        return self.log_dict

    def test_step(self, batch, batch_idx):
        inputs_dict = self.get_input(batch)
        inputs = inputs_dict[self.image_key]
        waveform = inputs_dict["waveform"]
        fnames = inputs_dict["fname"]

        reconstructions, posterior = self(inputs)
        save_path = os.path.join(
            self.get_log_dir(), "autoencoder_result_audiocaps", str(self.global_step)
        )

        if self.image_key == "stft":
            wav_prediction = self.decode_to_waveform(reconstructions)
            wav_original = waveform
            self.save_wave(
                wav_prediction, fnames, os.path.join(save_path, "stft_wav_prediction")
            )
        else:
            wav_vocoder_gt, wav_prediction = synth_one_sample(
                inputs.squeeze(1),
                reconstructions.squeeze(1),
                labels="validation",
                vocoder=self.vocoder,
            )
            self.save_wave(
                wav_vocoder_gt, fnames, os.path.join(save_path, "fbank_vocoder_gt_wave")
            )
            self.save_wave(
                wav_prediction, fnames, os.path.join(save_path, "fbank_wav_prediction")
            )

    def save_wave(self, batch_wav, fname, save_dir):
        os.makedirs(save_dir, exist_ok=True)

        for wav, name in zip(batch_wav, fname):
            name = os.path.basename(name)

            sf.write(os.path.join(save_dir, name), wav, samplerate=self.sampling_rate)

    def configure_optimizers(self):
        lr = self.learning_rate
        params = (
            list(self.encoder.parameters())
            + list(self.decoder.parameters())
            + list(self.quant_conv.parameters())
            + list(self.post_quant_conv.parameters())
        )

        if self.image_key == "stft":
            params += list(self.wave_decoder.parameters())

        opt_ae = torch.optim.Adam(params, lr=lr, betas=(0.5, 0.9))

        if self.image_key == "fbank":
            disc_params = self.loss.discriminator.parameters()
        elif self.image_key == "stft":
            disc_params = itertools.chain(
                self.loss.msd.parameters(), self.loss.mpd.parameters()
            )

        opt_disc = torch.optim.Adam(disc_params, lr=lr, betas=(0.5, 0.9))
        return [opt_ae, opt_disc], []

    def get_last_layer(self):
        return self.decoder.conv_out.weight

    @torch.no_grad()
    def log_images(self, batch, train=True, only_inputs=False, waveform=None, **kwargs):
        log = dict()
        x = batch.to(self.device)
        if not only_inputs:
            xrec, posterior = self(x)
            log["samples"] = self.decode(posterior.sample())
            log["reconstructions"] = xrec

        log["inputs"] = x
        wavs = self._log_img(log, train=train, index=0, waveform=waveform)
        return wavs

    def _log_img(self, log, train=True, index=0, waveform=None):
        images_input = self.tensor2numpy(log["inputs"][index, 0]).T
        images_reconstruct = self.tensor2numpy(log["reconstructions"][index, 0]).T
        images_samples = self.tensor2numpy(log["samples"][index, 0]).T

        if train:
            name = "train"
        else:
            name = "val"

        if self.logger is not None:
            self.logger.log_image(
                "img_%s" % name,
                [images_input, images_reconstruct, images_samples],
                caption=["input", "reconstruct", "samples"],
            )

        inputs, reconstructions, samples = (
            log["inputs"],
            log["reconstructions"],
            log["samples"],
        )

        if self.image_key == "fbank":
            wav_original, wav_prediction = synth_one_sample(
                inputs[index],
                reconstructions[index],
                labels="validation",
                vocoder=self.vocoder,
            )
            wav_original, wav_samples = synth_one_sample(
                inputs[index], samples[index], labels="validation", vocoder=self.vocoder
            )
            wav_original, wav_samples, wav_prediction = (
                wav_original[0],
                wav_samples[0],
                wav_prediction[0],
            )
        elif self.image_key == "stft":
            wav_prediction = (
                self.decode_to_waveform(reconstructions)[index, 0]
                .cpu()
                .detach()
                .numpy()
            )
            wav_samples = (
                self.decode_to_waveform(samples)[index, 0].cpu().detach().numpy()
            )
            wav_original = waveform[index, 0].cpu().detach().numpy()

        if self.logger is not None:
            self.logger.experiment.log(
                {
                    "original_%s"
                    % name: wandb.Audio(
                        wav_original, caption="original", sample_rate=self.sampling_rate
                    ),
                    "reconstruct_%s"
                    % name: wandb.Audio(
                        wav_prediction,
                        caption="reconstruct",
                        sample_rate=self.sampling_rate,
                    ),
                    "samples_%s"
                    % name: wandb.Audio(
                        wav_samples, caption="samples", sample_rate=self.sampling_rate
                    ),
                }
            )

        return wav_original, wav_prediction, wav_samples

    def tensor2numpy(self, tensor):
        return tensor.cpu().detach().numpy()

    def to_rgb(self, x):
        assert self.image_key == "segmentation"
        if not hasattr(self, "colorize"):
            self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
        x = F.conv2d(x, weight=self.colorize)
        x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0
        return x


class IdentityFirstStage(torch.nn.Module):
    def __init__(self, *args, vq_interface=False, **kwargs):
        self.vq_interface = vq_interface  # TODO: Should be true by default but check to not break older stuff
        super().__init__()

    def encode(self, x, *args, **kwargs):
        return x

    def decode(self, x, *args, **kwargs):
        return x

    def quantize(self, x, *args, **kwargs):
        if self.vq_interface:
            return x, None, [None, None, None]
        return x

    def forward(self, x, *args, **kwargs):
        return x