File size: 2,260 Bytes
9b9e0ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
from scipy import stats
from sklearn import metrics
import torch


def d_prime(auc):
    standard_normal = stats.norm()
    d_prime = standard_normal.ppf(auc) * np.sqrt(2.0)
    return d_prime


@torch.no_grad()
def concat_all_gather(tensor):
    """
    Performs all_gather operation on the provided tensors.
    *** Warning ***: torch.distributed.all_gather has no gradient.
    """
    tensors_gather = [
        torch.ones_like(tensor) for _ in range(torch.distributed.get_world_size())
    ]
    torch.distributed.all_gather(tensors_gather, tensor, async_op=False)

    output = torch.cat(tensors_gather, dim=0)
    return output


def calculate_stats(output, target):
    """Calculate statistics including mAP, AUC, etc.

    Args:
      output: 2d array, (samples_num, classes_num)
      target: 2d array, (samples_num, classes_num)

    Returns:
      stats: list of statistic of each class.
    """

    classes_num = target.shape[-1]
    stats = []

    # Accuracy, only used for single-label classification such as esc-50, not for multiple label one such as AudioSet
    acc = metrics.accuracy_score(np.argmax(target, 1), np.argmax(output, 1))

    # Class-wise statistics
    for k in range(classes_num):

        # Average precision
        avg_precision = metrics.average_precision_score(
            target[:, k], output[:, k], average=None
        )

        # AUC
        # auc = metrics.roc_auc_score(target[:, k], output[:, k], average=None)

        # Precisions, recalls
        (precisions, recalls, thresholds) = metrics.precision_recall_curve(
            target[:, k], output[:, k]
        )

        # FPR, TPR
        (fpr, tpr, thresholds) = metrics.roc_curve(target[:, k], output[:, k])

        save_every_steps = 1000  # Sample statistics to reduce size
        dict = {
            "precisions": precisions[0::save_every_steps],
            "recalls": recalls[0::save_every_steps],
            "AP": avg_precision,
            "fpr": fpr[0::save_every_steps],
            "fnr": 1.0 - tpr[0::save_every_steps],
            # 'auc': auc,
            # note acc is not class-wise, this is just to keep consistent with other metrics
            "acc": acc,
        }
        stats.append(dict)

    return stats