File size: 1,924 Bytes
9b9e0ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# DeiT: https://github.com/facebookresearch/deit
# --------------------------------------------------------

import os
import PIL

from torchvision import datasets, transforms

from timm.data import create_transform
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD


def build_dataset(is_train, args):
    transform = build_transform(is_train, args)

    root = os.path.join(args.data_path, "train" if is_train else "val")
    dataset = datasets.ImageFolder(root, transform=transform)

    print(dataset)

    return dataset


def build_transform(is_train, args):
    mean = IMAGENET_DEFAULT_MEAN
    std = IMAGENET_DEFAULT_STD
    # train transform
    if is_train:
        # this should always dispatch to transforms_imagenet_train
        transform = create_transform(
            input_size=args.input_size,
            is_training=True,
            color_jitter=args.color_jitter,
            auto_augment=args.aa,
            interpolation="bicubic",
            re_prob=args.reprob,
            re_mode=args.remode,
            re_count=args.recount,
            mean=mean,
            std=std,
        )
        return transform

    # eval transform
    t = []
    if args.input_size <= 224:
        crop_pct = 224 / 256
    else:
        crop_pct = 1.0
    size = int(args.input_size / crop_pct)
    t.append(
        transforms.Resize(
            size, interpolation=PIL.Image.BICUBIC
        ),  # to maintain same ratio w.r.t. 224 images
    )
    t.append(transforms.CenterCrop(args.input_size))

    t.append(transforms.ToTensor())
    t.append(transforms.Normalize(mean, std))
    return transforms.Compose(t)