File size: 8,851 Bytes
9b9e0ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import json
import random
from tqdm import tqdm
import torch
import decord
decord.bridge.set_bridge("torch")
import torchaudio
from math import ceil
from torch.utils.data import Dataset, DataLoader
import pandas as pd
import numpy as np
class AudioVisualDataset(Dataset):
"""Can sample data from audio-visual databases
Params:
min_video_frames: used to drop short video clips
video_resize: resize for CLIP processing
sampling_rate: audio sampling rate
max_clip_len: max length (seconds) of audiovisual clip to be sampled
num_sample_frames: number of image frames to be uniformly sampled from video
"""
def __init__(
self,
datafiles=[
"/mnt/bn/data-xubo/dataset/audioset_videos/datafiles/audioset_balanced_train.json",
],
min_video_frames=30,
video_resize=[224, 224],
sampling_rate=16000,
sample_av_clip=True,
max_clip_len=10,
num_sample_frames=10,
# hyparameters used for SpecAug
freqm=48,
timem=192,
return_label=False,
):
all_data_json = []
for datafile in datafiles:
with open(datafile, "r") as fp:
data_json = json.load(fp)["data"]
all_data_json.extend(data_json)
# drop short video clips
self.all_data_json = [
data
for data in all_data_json
if int(data["video_shape"][0]) >= min_video_frames
]
self.max_clip_len = max_clip_len
self.video_resize = video_resize
self.sampling_rate = sampling_rate
self.sample_av_clip = sample_av_clip
self.num_sample_frames = num_sample_frames
self.corresponding_audio_len = self.sampling_rate * self.max_clip_len
# hyparameters used for AudioMAE
self.freqm = freqm
self.timem = timem
self.norm_mean = -4.2677393
self.norm_std = 4.5689974
self.melbins = 128
self.TARGET_LEN = 1024
self.return_label = return_label
if self.return_label:
self.audioset_label2idx = self._prepare_audioset()
def __len__(self):
return len(self.all_data_json)
def _read_audio_video(self, index):
try:
video_path = self.all_data_json[index]["mp4"]
# read audio
ar = decord.AudioReader(
video_path, sample_rate=self.sampling_rate, mono=True
)
# read video frames
vr = decord.VideoReader(
video_path,
height=self.video_resize[0],
width=self.video_resize[1],
)
labels = self.all_data_json[index]["labels"]
return vr, ar, labels
except Exception as e:
print(f"error: {e} occurs, when loading {video_path}")
random_index = random.randint(0, len(self.all_data_json) - 1)
return self._read_audio_video(index=random_index)
def _prepare_audioset(self):
df1 = pd.read_csv(
"/mnt/bn/lqhaoheliu/datasets/audioset/metadata/class_labels_indices.csv",
delimiter=",",
skiprows=0,
)
label_set = df1.to_numpy()
code2id = {}
for i in range(len(label_set)):
code2id[label_set[i][1]] = label_set[i][0]
return code2id
def __getitem__(self, index):
# read audio and video
vr, ar, labels = self._read_audio_video(index)
# create a audio tensor
audio_data = ar[:] # [1, samples]
audio_len = audio_data.shape[1] / self.sampling_rate
audio_data = audio_data.squeeze(0) # [samples]
# create a video tensor
full_vid_length = len(vr)
video_rate = ceil(vr.get_avg_fps())
samples_per_frame = float(self.sampling_rate) / video_rate
start_frame = 0
# sample video clip
if audio_len > self.max_clip_len and self.sample_av_clip:
start_frame = random.randint(
0, max(full_vid_length - video_rate * self.max_clip_len, 0)
)
end_frame = min(start_frame + video_rate * self.max_clip_len, full_vid_length)
video_data = vr.get_batch(range(start_frame, end_frame))
# sample audio clip
if audio_len > self.max_clip_len and self.sample_av_clip:
# corresponding_audio_len = int(video_data.size()[0] * samples_per_frame)
corresponding_audio_start = int(start_frame * samples_per_frame)
audio_data = audio_data[corresponding_audio_start:]
# cut or pad audio clip with respect to the sampled video clip
if audio_data.shape[0] < self.corresponding_audio_len:
zero_data = torch.zeros(self.corresponding_audio_len)
zero_data[: audio_data.shape[0]] = audio_data
audio_data = zero_data
elif audio_data.shape[0] > self.corresponding_audio_len:
audio_data = audio_data[: self.corresponding_audio_len]
# uniformly sample image frames from video [tentative solution]
interval = video_data.shape[0] // self.num_sample_frames
video_data = video_data[::interval][: self.num_sample_frames]
assert (
video_data.shape[0] == self.num_sample_frames
), f"number of sampled image frames is {video_data.shape[0]}"
assert (
audio_data.shape[0] == self.corresponding_audio_len
), f"number of audio samples is {audio_data.shape[0]}"
# video transformation
video_data = video_data / 255.0
video_data = video_data.permute(0, 3, 1, 2) # [N, H, W, C] -> [N, C, H, W]
# calculate mel fbank of waveform for audio encoder
audio_data = audio_data.unsqueeze(0) # [1, samples]
audio_data = audio_data - audio_data.mean()
fbank = torchaudio.compliance.kaldi.fbank(
audio_data,
htk_compat=True,
sample_frequency=self.sampling_rate,
use_energy=False,
window_type="hanning",
num_mel_bins=self.melbins,
dither=0.0,
frame_shift=10,
)
# cut and pad
n_frames = fbank.shape[0]
p = self.TARGET_LEN - n_frames
if p > 0:
m = torch.nn.ZeroPad2d((0, 0, 0, p))
fbank = m(fbank)
elif p < 0:
fbank = fbank[0 : self.TARGET_LEN, :]
# SpecAug for training (not for eval)
freqm = torchaudio.transforms.FrequencyMasking(self.freqm)
timem = torchaudio.transforms.TimeMasking(self.timem)
fbank = fbank.transpose(0, 1).unsqueeze(0) # 1, 128, 1024 (...,freq,time)
if self.freqm != 0:
fbank = freqm(fbank)
if self.timem != 0:
fbank = timem(fbank) # (..., freq, time)
fbank = torch.transpose(fbank.squeeze(), 0, 1) # time, freq
fbank = (fbank - self.norm_mean) / (self.norm_std * 2)
fbank = fbank.unsqueeze(0)
if self.return_label:
# get audioset lebel indexes
label_indices = np.zeros(527)
for label_str in labels.split(","):
label_indices[int(self.audioset_label2idx[label_str])] = 1.0
label_indices = torch.FloatTensor(label_indices)
data_dict = {
"labels": label_indices,
"images": video_data,
"fbank": fbank,
# 'modality': 'audio_visual'
}
else:
data_dict = {
"images": video_data,
"fbank": fbank,
# 'modality': 'audio_visual'
}
return data_dict
def collate_fn(list_data_dict):
r"""Collate mini-batch data to inputs and targets for training.
Args:
list_data_dict: e.g., [
{'vocals': (channels_num, segment_samples),
'accompaniment': (channels_num, segment_samples),
'mixture': (channels_num, segment_samples)
},
{'vocals': (channels_num, segment_samples),
'accompaniment': (channels_num, segment_samples),
'mixture': (channels_num, segment_samples)
},
...]
Returns:
data_dict: e.g. {
'vocals': (batch_size, channels_num, segment_samples),
'accompaniment': (batch_size, channels_num, segment_samples),
'mixture': (batch_size, channels_num, segment_samples)
}
"""
data_dict = {}
for key in list_data_dict[0].keys():
# for key in ['waveform']:
# try:
data_dict[key] = [data_dict[key] for data_dict in list_data_dict]
# except:
# from IPython import embed; embed(using=False); os._exit(0)
data_dict[key] = torch.stack(data_dict[key])
return data_dict
|