File size: 7,942 Bytes
9b9e0ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# DeiT: https://github.com/facebookresearch/deit
# --------------------------------------------------------

from functools import partial

import torch
import torch.nn as nn
import numpy as np
import timm.models.vision_transformer
from timm.models.vision_transformer import PatchEmbed, Block
from qa_mdt.audioldm_train.modules.audiomae.util.patch_embed import (
    PatchEmbed_new,
    PatchEmbed3D_new,
)


class VisionTransformer(timm.models.vision_transformer.VisionTransformer):
    """Vision Transformer with support for global average pooling"""

    def __init__(
        self, global_pool=False, mask_2d=True, use_custom_patch=False, **kwargs
    ):
        super(VisionTransformer, self).__init__(**kwargs)

        self.global_pool = global_pool
        if self.global_pool:
            norm_layer = kwargs["norm_layer"]
            embed_dim = kwargs["embed_dim"]
            self.fc_norm = norm_layer(embed_dim)
        del self.norm  # remove the original norm
        self.mask_2d = mask_2d
        self.use_custom_patch = use_custom_patch
        num_heads = 12
        depth = 12
        mlp_ratio = 4

    def forward_features(self, x):
        B = x.shape[0]
        x = self.patch_embed(x)
        x = x + self.pos_embed[:, 1:, :]
        cls_token = self.cls_token + self.pos_embed[:, :1, :]
        cls_tokens = cls_token.expand(
            B, -1, -1
        )  # stole cls_tokens impl from Phil Wang, thanks
        x = torch.cat((cls_tokens, x), dim=1)
        x = self.pos_drop(x)

        for blk in self.blocks:
            x = blk(x)

        if self.global_pool:
            x = x[:, 1:, :].mean(dim=1)  # global pool without cls token
            outcome = self.fc_norm(x)
        else:
            x = self.norm(x)
            outcome = x[:, 0]

        return outcome

    def random_masking(self, x, mask_ratio):
        """
        Perform per-sample random masking by per-sample shuffling.
        Per-sample shuffling is done by argsort random noise.
        x: [N, L, D], sequence
        """
        N, L, D = x.shape  # batch, length, dim
        len_keep = int(L * (1 - mask_ratio))

        noise = torch.rand(N, L, device=x.device)  # noise in [0, 1]

        # sort noise for each sample
        ids_shuffle = torch.argsort(
            noise, dim=1
        )  # ascend: small is keep, large is remove
        ids_restore = torch.argsort(ids_shuffle, dim=1)

        # keep the first subset
        ids_keep = ids_shuffle[:, :len_keep]
        x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))

        # generate the binary mask: 0 is keep, 1 is remove
        mask = torch.ones([N, L], device=x.device)
        mask[:, :len_keep] = 0
        # unshuffle to get the binary mask
        mask = torch.gather(mask, dim=1, index=ids_restore)

        return x_masked, mask, ids_restore

    def random_masking_2d(self, x, mask_t_prob, mask_f_prob):
        """
        2D: Spectrogram (msking t and f under mask_t_prob and mask_f_prob)
        Perform per-sample random masking by per-sample shuffling.
        Per-sample shuffling is done by argsort random noise.
        x: [N, L, D], sequence
        """

        N, L, D = x.shape  # batch, length, dim
        if self.use_custom_patch:
            # # for AS
            T = 101  # 64,101
            F = 12  # 8,12
            # # for ESC
            # T=50
            # F=12
            # for SPC
            # T=12
            # F=12
        else:
            # ## for AS
            T = 64
            F = 8
            # ## for ESC
            # T=32
            # F=8
            ## for SPC
            # T=8
            # F=8

        # mask T
        x = x.reshape(N, T, F, D)
        len_keep_T = int(T * (1 - mask_t_prob))
        noise = torch.rand(N, T, device=x.device)  # noise in [0, 1]
        # sort noise for each sample
        ids_shuffle = torch.argsort(
            noise, dim=1
        )  # ascend: small is keep, large is remove
        ids_keep = ids_shuffle[:, :len_keep_T]
        index = ids_keep.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, F, D)
        # x_masked = torch.gather(x, dim=1, index=index)
        # x_masked = x_masked.reshape(N,len_keep_T*F,D)
        x = torch.gather(x, dim=1, index=index)  # N, len_keep_T(T'), F, D

        # mask F
        # x = x.reshape(N, T, F, D)
        x = x.permute(0, 2, 1, 3)  # N T' F D => N F T' D
        len_keep_F = int(F * (1 - mask_f_prob))
        noise = torch.rand(N, F, device=x.device)  # noise in [0, 1]
        # sort noise for each sample
        ids_shuffle = torch.argsort(
            noise, dim=1
        )  # ascend: small is keep, large is remove
        ids_keep = ids_shuffle[:, :len_keep_F]
        # index = ids_keep.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, T, D)
        index = ids_keep.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, len_keep_T, D)
        x_masked = torch.gather(x, dim=1, index=index)
        x_masked = x_masked.permute(0, 2, 1, 3)  # N F' T' D => N T' F' D
        # x_masked = x_masked.reshape(N,len_keep*T,D)
        x_masked = x_masked.reshape(N, len_keep_F * len_keep_T, D)

        return x_masked, None, None

    def forward_features_mask(self, x, mask_t_prob, mask_f_prob):
        B = x.shape[0]  # 4,1,1024,128
        x = self.patch_embed(x)  # 4, 512, 768

        x = x + self.pos_embed[:, 1:, :]
        if self.random_masking_2d:
            x, mask, ids_restore = self.random_masking_2d(x, mask_t_prob, mask_f_prob)
        else:
            x, mask, ids_restore = self.random_masking(x, mask_t_prob)
        cls_token = self.cls_token + self.pos_embed[:, :1, :]
        cls_tokens = cls_token.expand(B, -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)
        x = self.pos_drop(x)

        # apply Transformer blocks
        for blk in self.blocks:
            x = blk(x)

        if self.global_pool:
            x = x[:, 1:, :].mean(dim=1)  # global pool without cls token
            outcome = self.fc_norm(x)
        else:
            x = self.norm(x)
            outcome = x[:, 0]

        return outcome

    # overwrite original timm
    def forward(self, x, v=None, mask_t_prob=0.0, mask_f_prob=0.0):
        if mask_t_prob > 0.0 or mask_f_prob > 0.0:
            x = self.forward_features_mask(
                x, mask_t_prob=mask_t_prob, mask_f_prob=mask_f_prob
            )
        else:
            x = self.forward_features(x)
        x = self.head(x)
        return x


def vit_small_patch16(**kwargs):
    model = VisionTransformer(
        patch_size=16,
        embed_dim=384,
        depth=12,
        num_heads=6,
        mlp_ratio=4,
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        **kwargs
    )
    return model


def vit_base_patch16(**kwargs):
    model = VisionTransformer(
        patch_size=16,
        embed_dim=768,
        depth=12,
        num_heads=12,
        mlp_ratio=4,
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        **kwargs
    )
    return model


def vit_large_patch16(**kwargs):
    model = VisionTransformer(
        patch_size=16,
        embed_dim=1024,
        depth=24,
        num_heads=16,
        mlp_ratio=4,
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        **kwargs
    )
    return model


def vit_huge_patch14(**kwargs):
    model = VisionTransformer(
        patch_size=14,
        embed_dim=1280,
        depth=32,
        num_heads=16,
        mlp_ratio=4,
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        **kwargs
    )
    return model