File size: 15,063 Bytes
9b9e0ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
import os
import torch
import numpy as np
import torchaudio
import matplotlib.pyplot as plt
CACHE = {
"get_vits_phoneme_ids": {
"PAD_LENGTH": 310,
"_pad": "_",
"_punctuation": ';:,.!?¡¿—…"«»“” ',
"_letters": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz",
"_letters_ipa": "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ",
"_special": "♪☎☒☝⚠",
}
}
CACHE["get_vits_phoneme_ids"]["symbols"] = (
[CACHE["get_vits_phoneme_ids"]["_pad"]]
+ list(CACHE["get_vits_phoneme_ids"]["_punctuation"])
+ list(CACHE["get_vits_phoneme_ids"]["_letters"])
+ list(CACHE["get_vits_phoneme_ids"]["_letters_ipa"])
+ list(CACHE["get_vits_phoneme_ids"]["_special"])
)
CACHE["get_vits_phoneme_ids"]["_symbol_to_id"] = {
s: i for i, s in enumerate(CACHE["get_vits_phoneme_ids"]["symbols"])
}
def get_vits_phoneme_ids(config, dl_output, metadata):
pad_token_id = 0
pad_length = CACHE["get_vits_phoneme_ids"]["PAD_LENGTH"]
_symbol_to_id = CACHE["get_vits_phoneme_ids"]["_symbol_to_id"]
assert (
"phonemes" in metadata.keys()
), "You must provide vits phonemes on using addon get_vits_phoneme_ids"
clean_text = metadata["phonemes"]
sequence = []
for symbol in clean_text:
symbol_id = _symbol_to_id[symbol]
sequence += [symbol_id]
inserted_zero_sequence = [0] * (len(sequence) * 2)
inserted_zero_sequence[1::2] = sequence
inserted_zero_sequence = inserted_zero_sequence + [0]
def _pad_phonemes(phonemes_list):
return phonemes_list + [pad_token_id] * (pad_length - len(phonemes_list))
return {"phoneme_idx": torch.LongTensor(_pad_phonemes(inserted_zero_sequence))}
def get_vits_phoneme_ids_no_padding(config, dl_output, metadata):
pad_token_id = 0
pad_length = CACHE["get_vits_phoneme_ids"]["PAD_LENGTH"]
_symbol_to_id = CACHE["get_vits_phoneme_ids"]["_symbol_to_id"]
assert (
"phonemes" in metadata.keys()
), "You must provide vits phonemes on using addon get_vits_phoneme_ids"
clean_text = metadata["phonemes"] + "⚠"
sequence = []
for symbol in clean_text:
if symbol not in _symbol_to_id.keys():
print("%s is not in the vocabulary. %s" % (symbol, clean_text))
symbol = "_"
symbol_id = _symbol_to_id[symbol]
sequence += [symbol_id]
def _pad_phonemes(phonemes_list):
return phonemes_list + [pad_token_id] * (pad_length - len(phonemes_list))
sequence = sequence[:pad_length]
return {"phoneme_idx": torch.LongTensor(_pad_phonemes(sequence))}
def calculate_relative_bandwidth(config, dl_output, metadata):
assert "stft" in dl_output.keys()
# The last dimension of the stft feature is the frequency dimension
freq_dimensions = dl_output["stft"].size(-1)
freq_energy_dist = torch.sum(dl_output["stft"], dim=0)
freq_energy_dist = torch.cumsum(freq_energy_dist, dim=0)
total_energy = freq_energy_dist[-1]
percentile_5th = total_energy * 0.05
percentile_95th = total_energy * 0.95
lower_idx = torch.argmin(torch.abs(percentile_5th - freq_energy_dist))
higher_idx = torch.argmin(torch.abs(percentile_95th - freq_energy_dist))
lower_idx = int((lower_idx / freq_dimensions) * 1000)
higher_idx = int((higher_idx / freq_dimensions) * 1000)
return {"freq_energy_percentile": torch.LongTensor([lower_idx, higher_idx])}
def calculate_mel_spec_relative_bandwidth_as_extra_channel(config, dl_output, metadata):
assert "stft" in dl_output.keys()
linear_mel_spec = torch.exp(torch.clip(dl_output["log_mel_spec"], max=10))
# The last dimension of the stft feature is the frequency dimension
freq_dimensions = linear_mel_spec.size(-1)
freq_energy_dist = torch.sum(linear_mel_spec, dim=0)
freq_energy_dist = torch.cumsum(freq_energy_dist, dim=0)
total_energy = freq_energy_dist[-1]
percentile_5th = total_energy * 0.05
percentile_95th = total_energy * 0.95
lower_idx = torch.argmin(torch.abs(percentile_5th - freq_energy_dist))
higher_idx = torch.argmin(torch.abs(percentile_95th - freq_energy_dist))
latent_t_size = config["model"]["params"]["latent_t_size"]
latent_f_size = config["model"]["params"]["latent_f_size"]
lower_idx = int(latent_f_size * float((lower_idx / freq_dimensions)))
higher_idx = int(latent_f_size * float((higher_idx / freq_dimensions)))
bandwidth_condition = torch.zeros((latent_t_size, latent_f_size))
bandwidth_condition[:, lower_idx:higher_idx] += 1.0
return {
"mel_spec_bandwidth_cond_extra_channel": bandwidth_condition,
"freq_energy_percentile": torch.LongTensor([lower_idx, higher_idx]),
}
def waveform_rs_48k(config, dl_output, metadata):
waveform = dl_output["waveform"] # [1, samples]
sampling_rate = dl_output["sampling_rate"]
if sampling_rate != 48000:
waveform_48k = torchaudio.functional.resample(
waveform, orig_freq=sampling_rate, new_freq=48000
)
else:
waveform_48k = waveform
return {"waveform_48k": waveform_48k}
def extract_vits_phoneme_and_flant5_text(config, dl_output, metadata):
assert (
"phoneme" not in metadata.keys()
), "The metadata of speech you use seems belong to fastspeech. Please check dataset_root.json"
if "phonemes" in metadata.keys():
new_item = get_vits_phoneme_ids_no_padding(config, dl_output, metadata)
new_item["text"] = "" # We assume TTS data does not have text description
else:
fake_metadata = {"phonemes": ""} # Add empty phoneme sequence
new_item = get_vits_phoneme_ids_no_padding(config, dl_output, fake_metadata)
return new_item
def extract_fs2_phoneme_and_flant5_text(config, dl_output, metadata):
if "phoneme" in metadata.keys():
new_item = extract_fs2_phoneme_g2p_en_feature(config, dl_output, metadata)
new_item["text"] = ""
else:
fake_metadata = {"phoneme": []}
new_item = extract_fs2_phoneme_g2p_en_feature(config, dl_output, fake_metadata)
return new_item
def extract_fs2_phoneme_g2p_en_feature(config, dl_output, metadata):
PAD_LENGTH = 135
phonemes_lookup_dict = {
"K": 0,
"IH2": 1,
"NG": 2,
"OW2": 3,
"AH2": 4,
"F": 5,
"AE0": 6,
"IY0": 7,
"SH": 8,
"G": 9,
"W": 10,
"UW1": 11,
"AO2": 12,
"AW2": 13,
"UW0": 14,
"EY2": 15,
"UW2": 16,
"AE2": 17,
"IH0": 18,
"P": 19,
"D": 20,
"ER1": 21,
"AA1": 22,
"EH0": 23,
"UH1": 24,
"N": 25,
"V": 26,
"AY1": 27,
"EY1": 28,
"UH2": 29,
"EH1": 30,
"L": 31,
"AA2": 32,
"R": 33,
"OY1": 34,
"Y": 35,
"ER2": 36,
"S": 37,
"AE1": 38,
"AH1": 39,
"JH": 40,
"ER0": 41,
"EH2": 42,
"IY2": 43,
"OY2": 44,
"AW1": 45,
"IH1": 46,
"IY1": 47,
"OW0": 48,
"AO0": 49,
"AY0": 50,
"EY0": 51,
"AY2": 52,
"UH0": 53,
"M": 54,
"TH": 55,
"T": 56,
"OY0": 57,
"AW0": 58,
"DH": 59,
"Z": 60,
"spn": 61,
"AH0": 62,
"sp": 63,
"AO1": 64,
"OW1": 65,
"ZH": 66,
"B": 67,
"AA0": 68,
"CH": 69,
"HH": 70,
}
pad_token_id = len(phonemes_lookup_dict.keys())
assert (
"phoneme" in metadata.keys()
), "The dataloader add-on extract_phoneme_g2p_en_feature will output phoneme id, which is not specified in your dataset"
phonemes = [
phonemes_lookup_dict[x]
for x in metadata["phoneme"]
if (x in phonemes_lookup_dict.keys())
]
if (len(phonemes) / PAD_LENGTH) > 5:
print(
"Warning: Phonemes length is too long and is truncated too much! %s"
% metadata
)
phonemes = phonemes[:PAD_LENGTH]
def _pad_phonemes(phonemes_list):
return phonemes_list + [pad_token_id] * (PAD_LENGTH - len(phonemes_list))
return {"phoneme_idx": torch.LongTensor(_pad_phonemes(phonemes))}
def extract_phoneme_g2p_en_feature(config, dl_output, metadata):
PAD_LENGTH = 250
phonemes_lookup_dict = {
" ": 0,
"AA": 1,
"AE": 2,
"AH": 3,
"AO": 4,
"AW": 5,
"AY": 6,
"B": 7,
"CH": 8,
"D": 9,
"DH": 10,
"EH": 11,
"ER": 12,
"EY": 13,
"F": 14,
"G": 15,
"HH": 16,
"IH": 17,
"IY": 18,
"JH": 19,
"K": 20,
"L": 21,
"M": 22,
"N": 23,
"NG": 24,
"OW": 25,
"OY": 26,
"P": 27,
"R": 28,
"S": 29,
"SH": 30,
"T": 31,
"TH": 32,
"UH": 33,
"UW": 34,
"V": 35,
"W": 36,
"Y": 37,
"Z": 38,
"ZH": 39,
}
pad_token_id = len(phonemes_lookup_dict.keys())
assert (
"phoneme" in metadata.keys()
), "The dataloader add-on extract_phoneme_g2p_en_feature will output phoneme id, which is not specified in your dataset"
phonemes = [
phonemes_lookup_dict[x]
for x in metadata["phoneme"]
if (x in phonemes_lookup_dict.keys())
]
if (len(phonemes) / PAD_LENGTH) > 5:
print(
"Warning: Phonemes length is too long and is truncated too much! %s"
% metadata
)
phonemes = phonemes[:PAD_LENGTH]
def _pad_phonemes(phonemes_list):
return phonemes_list + [pad_token_id] * (PAD_LENGTH - len(phonemes_list))
return {"phoneme_idx": torch.LongTensor(_pad_phonemes(phonemes))}
def extract_kaldi_fbank_feature(config, dl_output, metadata):
norm_mean = -4.2677393
norm_std = 4.5689974
waveform = dl_output["waveform"] # [1, samples]
sampling_rate = dl_output["sampling_rate"]
log_mel_spec_hifigan = dl_output["log_mel_spec"]
if sampling_rate != 16000:
waveform_16k = torchaudio.functional.resample(
waveform, orig_freq=sampling_rate, new_freq=16000
)
else:
waveform_16k = waveform
waveform_16k = waveform_16k - waveform_16k.mean()
fbank = torchaudio.compliance.kaldi.fbank(
waveform_16k,
htk_compat=True,
sample_frequency=16000,
use_energy=False,
window_type="hanning",
num_mel_bins=128,
dither=0.0,
frame_shift=10,
)
TARGET_LEN = log_mel_spec_hifigan.size(0)
# cut and pad
n_frames = fbank.shape[0]
p = TARGET_LEN - n_frames
if p > 0:
m = torch.nn.ZeroPad2d((0, 0, 0, p))
fbank = m(fbank)
elif p < 0:
fbank = fbank[:TARGET_LEN, :]
fbank = (fbank - norm_mean) / (norm_std * 2)
return {"ta_kaldi_fbank": fbank} # [1024, 128]
def extract_kaldi_fbank_feature_32k(config, dl_output, metadata):
norm_mean = -4.2677393
norm_std = 4.5689974
waveform = dl_output["waveform"] # [1, samples]
sampling_rate = dl_output["sampling_rate"]
log_mel_spec_hifigan = dl_output["log_mel_spec"]
if sampling_rate != 32000:
waveform_32k = torchaudio.functional.resample(
waveform, orig_freq=sampling_rate, new_freq=32000
)
else:
waveform_32k = waveform
waveform_32k = waveform_32k - waveform_32k.mean()
fbank = torchaudio.compliance.kaldi.fbank(
waveform_32k,
htk_compat=True,
sample_frequency=32000,
use_energy=False,
window_type="hanning",
num_mel_bins=128,
dither=0.0,
frame_shift=10,
)
TARGET_LEN = log_mel_spec_hifigan.size(0)
# cut and pad
n_frames = fbank.shape[0]
p = TARGET_LEN - n_frames
if p > 0:
m = torch.nn.ZeroPad2d((0, 0, 0, p))
fbank = m(fbank)
elif p < 0:
fbank = fbank[:TARGET_LEN, :]
fbank = (fbank - norm_mean) / (norm_std * 2)
return {"ta_kaldi_fbank": fbank} # [1024, 128]
# Use the beat and downbeat information as music conditions
def extract_drum_beat(config, dl_output, metadata):
def visualization(conditional_signal, mel_spectrogram, filename):
import soundfile as sf
sf.write(
os.path.basename(dl_output["fname"]),
np.array(dl_output["waveform"])[0],
dl_output["sampling_rate"],
)
plt.figure(figsize=(10, 10))
plt.subplot(211)
plt.imshow(np.array(conditional_signal).T, aspect="auto")
plt.title("Conditional Signal")
plt.subplot(212)
plt.imshow(np.array(mel_spectrogram).T, aspect="auto")
plt.title("Mel Spectrogram")
plt.savefig(filename)
plt.close()
assert "sample_rate" in metadata and "beat" in metadata and "downbeat" in metadata
sampling_rate = metadata["sample_rate"]
duration = dl_output["duration"]
# The dataloader segment length before performing torch resampling
original_segment_length_before_resample = int(sampling_rate * duration)
random_start_sample = int(dl_output["random_start_sample_in_original_audio_file"])
# The sample idx for beat and downbeat, relatively to the segmented audio
beat = [
x - random_start_sample
for x in metadata["beat"]
if (
x - random_start_sample >= 0
and x - random_start_sample <= original_segment_length_before_resample
)
]
downbeat = [
x - random_start_sample
for x in metadata["downbeat"]
if (
x - random_start_sample >= 0
and x - random_start_sample <= original_segment_length_before_resample
)
]
latent_shape = (
config["model"]["params"]["latent_t_size"],
config["model"]["params"]["latent_f_size"],
)
conditional_signal = torch.zeros(latent_shape)
# beat: -0.5
# downbeat: +1.0
# 0: none; -0.5: beat; 1.0: downbeat; 0.5: downbeat+beat
for each in beat:
beat_index = int(
(each / original_segment_length_before_resample) * latent_shape[0]
)
beat_index = min(beat_index, conditional_signal.size(0) - 1)
conditional_signal[beat_index, :] -= 0.5
for each in downbeat:
beat_index = int(
(each / original_segment_length_before_resample) * latent_shape[0]
)
beat_index = min(beat_index, conditional_signal.size(0) - 1)
conditional_signal[beat_index, :] += 1.0
# visualization(conditional_signal, dl_output["log_mel_spec"], filename = os.path.basename(dl_output["fname"])+".png")
return {"cond_beat_downbeat": conditional_signal}
|