File size: 7,353 Bytes
4c6879b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import sys
import os

# Get the absolute path of IndicTransToolkit
indictrans_path = "/content/Voice-to-Text-Translation-System-Leveraging-Whisper-and-IndicTrans2/IndicTrans2/huggingface_interface/IndicTransToolkit/IndicTransToolkit"
sys.path.append(indictrans_path)

from processor import IndicProcessor

# Check if GPU is available
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"


def translate_text(transcription, target_lang, src_lang):
    mapping = {
        "Assamese": "asm_Beng", "Bengali": "ben_Beng", "Bodo": "brx_Deva", "Dogri": "doi_Deva",
        "Gujarati": "guj_Gujr", "Hindi": "hin_Deva", "Kannada": "kan_Knda",
        "Kashmiri(Perso-Arabic script)": "kas_Arab", "Kashmiri(Devanagari script)": "kas_Deva",
        "Konkani": "kok_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym",
        "Manipuri(Bengali script)": "mni_Beng", "Manipuri(Meitei script)": "mni_Mtei",
        "Marathi": "mar_Deva", "Nepali": "nep_Deva", "Odia": "ory_Orya",
        "Punjabi": "pan_Guru", "Sanskrit": "san_Deva", "Santali(Ol Chiki script)": "sat_Olck",
        "Sindhi(Perso-Arabic script)": "snd_Arab", "Sindhi(Devanagari script)": "snd_Deva",
        "Tamil": "tam_Taml", "Telugu": "tel_Telu", "Urdu": "urd_Arab","English":"eng_Latn",
    }
    if target_lang in mapping:
      tgt_lang = mapping[target_lang]

    if src_lang == tgt_lang:
      return "Detected Language and Target Language cannot be same"

    if src_lang == "eng_Latn":
      model_name = "prajdabre/rotary-indictrans2-en-indic-1B"
    else:
      model1_name ="prajdabre/rotary-indictrans2-indic-en-1B"
      model2_name = "prajdabre/rotary-indictrans2-en-indic-1B"
      translations = indic_indic(model1_name,model2_name, src_lang, target_lang,transcription)
      return translations 
    
    
    
    
    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

    # Load model in 8-bit quantization
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_name,
        trust_remote_code=True,
        torch_dtype=torch.float16,
        #load_in_8bit=True, 
        attn_implementation="flash_attention_2"
    ).to(DEVICE)

    ip = IndicProcessor(inference=True)

    input_sentences = [transcription]

    batch = ip.preprocess_batch(input_sentences, src_lang=src_lang, tgt_lang=tgt_lang)

    
    # Tokenize the sentences and generate input encodings
    inputs = tokenizer(
        batch,
        truncation=True,
        padding="longest",
        return_tensors="pt",
        max_length=2048,
        
    )

    # Move inputs to the correct device (only inputs, NOT model)
    inputs = {k: v.to(DEVICE) for k, v in inputs.items()}

    # Generate translations using the model
    with torch.inference_mode():
        generated_tokens = model.generate(
            **inputs,
            num_beams=5,
        length_penalty=1.5,
        repetition_penalty=2.0,
        num_return_sequences=1,
        max_new_tokens=2048,
        early_stopping=True
        )

    # Move generated tokens to CPU before decoding
    generated_tokens = generated_tokens.cpu().tolist()
   
    # Decode the generated tokens into text
    with tokenizer.as_target_tokenizer():
        generated_tokens = tokenizer.batch_decode(
            generated_tokens,
            skip_special_tokens=True,
            clean_up_tokenization_spaces=True
        )

    # Postprocess the translations
    translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang)
    print(type(translations))
    translations =str(translations).strip("'")
    return translations
def indic_indic(model1_name,model2_name,src_lang,tgt_lang,transcription,intermediate_lng ="eng_Latn",):
  tokenizer = AutoTokenizer.from_pretrained(model1_name, trust_remote_code=True)

    # Load model in 8-bit quantization
  model = AutoModelForSeq2SeqLM.from_pretrained(
        model1_name,
        trust_remote_code=True,
        torch_dtype=torch.float16,
        #load_in_8bit=True, 
        attn_implementation="flash_attention_2"
    ).to(DEVICE)

  ip = IndicProcessor(inference=True)

  input_sentences = [transcription]

  batch = ip.preprocess_batch(input_sentences, src_lang=src_lang, tgt_lang=intermediate_lng)

    # Tokenize the sentences and generate input encodings
  inputs = tokenizer(
        batch,
        truncation=True,
        padding="longest",
        return_tensors="pt",
        max_length=2048,
    )

    # Move inputs to the correct device (only inputs, NOT model)
  inputs = {k: v.to(DEVICE) for k, v in inputs.items()}

    # Generate translations using the model
  with torch.inference_mode():
        generated_tokens = model.generate(
            **inputs,
            num_beams=10,
        length_penalty=1.5,
        repetition_penalty=2.0,
        num_return_sequences=1,
        max_new_tokens=2048,
        early_stopping=True
        )

    # Move generated tokens to CPU before decoding
  generated_tokens = generated_tokens.cpu().tolist()

    # Decode the generated tokens into text
  with tokenizer.as_target_tokenizer():
        generated_tokens = tokenizer.batch_decode(
            generated_tokens,
            skip_special_tokens=True,
            clean_up_tokenization_spaces=True
        )

    # Postprocess the translations
  translations1 = ip.postprocess_batch(generated_tokens, lang=tgt_lang)
  
  translations1 =str(translations).strip("'")
  tokenizer = AutoTokenizer.from_pretrained(model2_name, trust_remote_code=True)

    # Load model in 8-bit quantization
  model = AutoModelForSeq2SeqLM.from_pretrained(
        model2_name,
        trust_remote_code=True,
        torch_dtype=torch.float16,
        #load_in_8bit=True, 
        attn_implementation="flash_attention_2"
    ).to(DEVICE)

  ip = IndicProcessor(inference=True)

  input_sentences = [translations1]

  batch = ip.preprocess_batch(input_sentences, src_lang=intermediate_lng, tgt_lang=tgt_lang)

    # Tokenize the sentences and generate input encodings
  inputs = tokenizer(
        batch,
        truncation=True,
        padding="longest",
        return_tensors="pt",
        max_length=2048,
    )

    # Move inputs to the correct device (only inputs, NOT model)
  inputs = {k: v.to(DEVICE) for k, v in inputs.items()}

    # Generate translations using the model
  with torch.inference_mode():
        generated_tokens = model.generate(
            **inputs,
            num_beams=10,
        length_penalty=1.5,
        repetition_penalty=2.0,
        num_return_sequences=1,
        max_new_tokens=2048,
        early_stopping=True
        )
 

    # Move generated tokens to CPU before decoding
  generated_tokens = generated_tokens.cpu().tolist()

    # Decode the generated tokens into text
  with tokenizer.as_target_tokenizer():
        generated_tokens = tokenizer.batch_decode(
            generated_tokens,
            skip_special_tokens=True,
            clean_up_tokenization_spaces=True
        )

    # Postprocess the translations
  translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang)
  

  return translations