File size: 5,530 Bytes
251efe4
 
5b4cc8a
 
3f36a31
5b4cc8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251efe4
 
5b4cc8a
 
 
 
 
251efe4
 
 
 
 
 
 
3f36a31
 
 
 
251efe4
 
5b4cc8a
 
3f36a31
 
251efe4
3f36a31
 
 
251efe4
 
 
 
 
3f36a31
251efe4
 
 
 
 
 
 
 
 
 
 
3f36a31
251efe4
3f36a31
251efe4
3f36a31
 
251efe4
3f36a31
251efe4
3f36a31
 
 
 
 
251efe4
 
3f36a31
251efe4
3f36a31
251efe4
 
3f36a31
251efe4
 
 
 
 
 
 
 
 
 
5b4cc8a
 
251efe4
522e057
251efe4
522e057
251efe4
 
 
 
 
 
 
 
5b4cc8a
251efe4
 
 
 
522e057
 
 
 
251efe4
 
 
 
 
 
3f36a31
 
 
251efe4
 
 
 
 
 
3f36a31
 
251efe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f36a31
 
 
 
 
 
 
 
 
251efe4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import json
import os
import sys
import evaluate
import gradio as gr
from dotenv import find_dotenv, load_dotenv
from huggingface_hub import InferenceClient, login

found_dotenv = find_dotenv(".env")

if len(found_dotenv) == 0:
    found_dotenv = find_dotenv(".env.example")
print(f"loading env vars from: {found_dotenv}")
load_dotenv(found_dotenv, override=False)

path = os.path.dirname(found_dotenv)
print(f"Adding {path} to sys.path")
sys.path.append(path)

from eval_modules.utils import calc_perf_scores
from eval_modules.calc_repetitions_v2e import detect_repetitions

model_name = os.getenv("MODEL_NAME") or "microsoft/Phi-3.5-mini-instruct"
hf_token = os.getenv("HF_TOKEN")

login(token=hf_token, add_to_git_credential=True)

questions_file_path = os.getenv("QUESTIONS_FILE_PATH") or "./ms_macro.json"

questions = json.loads(open(questions_file_path).read())
examples = [[question["question"].strip()] for question in questions]
print(f"Loaded {len(examples)} examples")

qa_system_prompt = "Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer."

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# client = InferenceClient("HuggingFaceH4/zephyr-7b-gemma-v0.1")
# client = InferenceClient("microsoft/Phi-3.5-mini-instruct")
client = InferenceClient(model_name, token=hf_token)


def chat(
    message,
    history: list[tuple[str, str]],
    system_message,
    temperature=0,
    frequency_penalty=0,
    presence_penalty=0,
    max_tokens=256,
    top_p=0.95,
):
    chat = []
    for item in history:
        chat.append({"role": "user", "content": item[0]})
        if item[1] is not None:
            chat.append({"role": "assistant", "content": item[1]})

    index = -1
    if [message] in examples:
        index = examples.index([message])
        message = f"{qa_system_prompt}\n\n{questions[index]['context']}\n\nQuestion: {message}"
        print("RAG prompt:", message)

    chat.append({"role": "user", "content": message})

    messages = [{"role": "system", "content": system_message}]
    messages.append({"role": "user", "content": message})

    partial_text = ""

    finish_reason = None
    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        frequency_penalty=None,  # frequency_penalty,
        presence_penalty=None,  # presence_penalty,
        top_p=top_p,
        seed=42,
    ):
        finish_reason = message.choices[0].finish_reason
        # print("finish_reason:", finish_reason)

        if finish_reason is None:
            new_text = message.choices[0].delta.content
            partial_text += new_text
            yield partial_text
        else:
            break

    answer = partial_text
    (whitespace_score, repetition_score, total_repetitions) = detect_repetitions(answer)
    partial_text += "\n\nRepetition Metrics:\n"
    partial_text += f"1. EWC Repetition Score: {whitespace_score:.3f}\n"
    partial_text += f"1. Text Repetition Score: {repetition_score:.3f}\n"
    partial_text += f"1. Total Repetitions: {total_repetitions:.3f}\n"
    rr = total_repetitions / len(answer) if len(answer) > 0 else 0
    partial_text += (
        f"1. Repetition Ratio: {rr:.3f}\n"
    )

    if index >= 0:  # RAG
        key = (
            "wellFormedAnswers"
            if "wellFormedAnswers" in questions[index]
            else "answers"
        )
        scores = calc_perf_scores([answer], [questions[index][key]], debug=True)

        partial_text += "\n\n Performance Metrics:\n"
        partial_text += f'1. BLEU-1: {scores["bleu_scores"]["bleu"]:.3f}\n'
        partial_text += f'1. RougeL: {scores["rouge_scores"]["rougeL"]:.3f}\n'
        perf = scores["bert_scores"]["f1"][0]
        partial_text += f'1. BERT-F1: {perf:.3f}\n'
        nrr = 1 - rr
        partial_text += f'1. RAP-BERT-F1: {perf * nrr * nrr * nrr:.3f}\n'

        partial_text += f"\n\nGround truth: {questions[index][key][0]}\n"

    partial_text += f"\n\nThe text generation has ended because: {finish_reason}\n"

    yield partial_text


demo = gr.ChatInterface(
    fn=chat,
    examples=examples,
    cache_examples=False,
    additional_inputs_accordion=gr.Accordion(
        label="⚙️ Parameters", open=False, render=False
    ),
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(
            minimum=0, maximum=2, step=0.1, value=0, label="Temperature", render=False
        ),
        gr.Slider(
            minimum=-2,
            maximum=2,
            step=0.1,
            value=0,
            label="Frequency Penalty",
            render=False,
        ),
        gr.Slider(
            minimum=-2,
            maximum=2,
            step=0.1,
            value=0,
            label="Presence Penalty",
            render=False,
        ),
        gr.Slider(
            minimum=128,
            maximum=4096,
            step=1,
            value=512,
            label="Max new tokens",
            render=False,
        ),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)
demo.launch()