Spaces:
Build error
Build error
few shot COMET results
Browse files
llm_toolkit/translation_utils.py
CHANGED
|
@@ -249,12 +249,7 @@ def count_chinese_characters(text):
|
|
| 249 |
return len(chinese_chars)
|
| 250 |
|
| 251 |
|
| 252 |
-
def
|
| 253 |
-
chinese_char_pattern = re.compile(r"[\u4e00-\u9fff]")
|
| 254 |
-
return 1 if chinese_char_pattern.search(text) else 0
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
def get_metrics(df, max_output_tokens=2048, variant="rpp"):
|
| 258 |
metrics_df = pd.DataFrame(df.columns.T)[2:]
|
| 259 |
metrics_df.rename(columns={0: "model"}, inplace=True)
|
| 260 |
metrics_df[variant] = metrics_df["model"].apply(
|
|
@@ -272,6 +267,7 @@ def get_metrics(df, max_output_tokens=2048, variant="rpp"):
|
|
| 272 |
|
| 273 |
tokenizers = {model: load_tokenizer(model) for model in models}
|
| 274 |
|
|
|
|
| 275 |
meteor = []
|
| 276 |
spbleu = []
|
| 277 |
bleu_1 = []
|
|
@@ -295,11 +291,22 @@ def get_metrics(df, max_output_tokens=2048, variant="rpp"):
|
|
| 295 |
df[new_col] = df["chinese"].apply(count_chinese_characters)
|
| 296 |
|
| 297 |
for col in columns:
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
print(f"{col}: {metrics}")
|
| 302 |
|
|
|
|
| 303 |
meteor.append(metrics["meteor"])
|
| 304 |
spbleu.append(metrics["sacrebleu"]["score"])
|
| 305 |
bleu_1.append(metrics["bleu_scores"]["bleu"])
|
|
@@ -332,6 +339,7 @@ def get_metrics(df, max_output_tokens=2048, variant="rpp"):
|
|
| 332 |
count_entries_with_max_tokens(df[new_col], max_output_tokens)
|
| 333 |
)
|
| 334 |
|
|
|
|
| 335 |
metrics_df["meteor"] = meteor
|
| 336 |
metrics_df["spbleu"] = spbleu
|
| 337 |
metrics_df["bleu_1"] = bleu_1
|
|
@@ -340,7 +348,7 @@ def get_metrics(df, max_output_tokens=2048, variant="rpp"):
|
|
| 340 |
metrics_df["repetition_score"] = repetition_score
|
| 341 |
metrics_df["total_repetitions"] = total_repetitions
|
| 342 |
metrics_df["rap"] = metrics_df.apply(
|
| 343 |
-
lambda x: x["
|
| 344 |
)
|
| 345 |
|
| 346 |
metrics_df["translation_completeness"] = translation_completeness
|
|
|
|
| 249 |
return len(chinese_chars)
|
| 250 |
|
| 251 |
|
| 252 |
+
def get_metrics(df, max_output_tokens=2048, variant="rpp", existing_metrics_df=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
metrics_df = pd.DataFrame(df.columns.T)[2:]
|
| 254 |
metrics_df.rename(columns={0: "model"}, inplace=True)
|
| 255 |
metrics_df[variant] = metrics_df["model"].apply(
|
|
|
|
| 267 |
|
| 268 |
tokenizers = {model: load_tokenizer(model) for model in models}
|
| 269 |
|
| 270 |
+
comet = []
|
| 271 |
meteor = []
|
| 272 |
spbleu = []
|
| 273 |
bleu_1 = []
|
|
|
|
| 291 |
df[new_col] = df["chinese"].apply(count_chinese_characters)
|
| 292 |
|
| 293 |
for col in columns:
|
| 294 |
+
if existing_metrics_df is not None:
|
| 295 |
+
print(f"Using existing metrics for {col}")
|
| 296 |
+
parts = col.split(f"/{variant}-")
|
| 297 |
+
result = existing_metrics_df[
|
| 298 |
+
(existing_metrics_df["model"] == parts[0])
|
| 299 |
+
& (existing_metrics_df[variant] == int(parts[1]))
|
| 300 |
+
]
|
| 301 |
+
metrics = result.to_dict("records")[0]
|
| 302 |
+
else:
|
| 303 |
+
print(f"Calculating metrics for {col}")
|
| 304 |
+
metrics = calc_metrics(
|
| 305 |
+
df["english"], df[col], sources=df["chinese"], debug=True
|
| 306 |
+
)
|
| 307 |
print(f"{col}: {metrics}")
|
| 308 |
|
| 309 |
+
comet.append(metrics["comet"])
|
| 310 |
meteor.append(metrics["meteor"])
|
| 311 |
spbleu.append(metrics["sacrebleu"]["score"])
|
| 312 |
bleu_1.append(metrics["bleu_scores"]["bleu"])
|
|
|
|
| 339 |
count_entries_with_max_tokens(df[new_col], max_output_tokens)
|
| 340 |
)
|
| 341 |
|
| 342 |
+
metrics_df["comet"] = comet
|
| 343 |
metrics_df["meteor"] = meteor
|
| 344 |
metrics_df["spbleu"] = spbleu
|
| 345 |
metrics_df["bleu_1"] = bleu_1
|
|
|
|
| 348 |
metrics_df["repetition_score"] = repetition_score
|
| 349 |
metrics_df["total_repetitions"] = total_repetitions
|
| 350 |
metrics_df["rap"] = metrics_df.apply(
|
| 351 |
+
lambda x: x["comet"] / math.log10(10 + x["total_repetitions"]), axis=1
|
| 352 |
)
|
| 353 |
|
| 354 |
metrics_df["translation_completeness"] = translation_completeness
|
llm_toolkit/translation_utils_v1.py
DELETED
|
@@ -1,421 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import re
|
| 3 |
-
import pandas as pd
|
| 4 |
-
import evaluate
|
| 5 |
-
import seaborn as sns
|
| 6 |
-
import matplotlib.pyplot as plt
|
| 7 |
-
from datasets import load_dataset
|
| 8 |
-
from langchain_openai import ChatOpenAI
|
| 9 |
-
from langchain_core.prompts import ChatPromptTemplate
|
| 10 |
-
from tqdm import tqdm
|
| 11 |
-
from eval_modules.calc_repetitions import *
|
| 12 |
-
from llm_toolkit.llm_utils import load_tokenizer
|
| 13 |
-
|
| 14 |
-
print(f"loading {__file__}")
|
| 15 |
-
|
| 16 |
-
bleu = evaluate.load("bleu")
|
| 17 |
-
rouge = evaluate.load("rouge")
|
| 18 |
-
meteor = evaluate.load("meteor")
|
| 19 |
-
accuracy = evaluate.load("accuracy")
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
def extract_answer(text, debug=False):
|
| 23 |
-
if text:
|
| 24 |
-
# Remove the begin and end tokens
|
| 25 |
-
text = re.sub(
|
| 26 |
-
r".*?(assistant|\[/INST\]).+?\b", "", text, flags=re.DOTALL | re.MULTILINE
|
| 27 |
-
)
|
| 28 |
-
if debug:
|
| 29 |
-
print("--------\nstep 1:", text)
|
| 30 |
-
|
| 31 |
-
text = re.sub(r"<.+?>.*", "", text, flags=re.DOTALL | re.MULTILINE)
|
| 32 |
-
if debug:
|
| 33 |
-
print("--------\nstep 2:", text)
|
| 34 |
-
|
| 35 |
-
text = re.sub(
|
| 36 |
-
r".*?end_header_id\|>\n\n", "", text, flags=re.DOTALL | re.MULTILINE
|
| 37 |
-
)
|
| 38 |
-
if debug:
|
| 39 |
-
print("--------\nstep 3:", text)
|
| 40 |
-
|
| 41 |
-
return text
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
def calc_metrics(references, predictions, debug=False):
|
| 45 |
-
assert len(references) == len(
|
| 46 |
-
predictions
|
| 47 |
-
), f"lengths are difference: {len(references)} != {len(predictions)}"
|
| 48 |
-
|
| 49 |
-
predictions = [extract_answer(text) for text in predictions]
|
| 50 |
-
results = {}
|
| 51 |
-
|
| 52 |
-
results["meteor"] = meteor.compute(predictions=predictions, references=references)[
|
| 53 |
-
"meteor"
|
| 54 |
-
]
|
| 55 |
-
|
| 56 |
-
results["bleu_scores"] = bleu.compute(
|
| 57 |
-
predictions=predictions, references=references, max_order=4
|
| 58 |
-
)
|
| 59 |
-
results["rouge_scores"] = rouge.compute(
|
| 60 |
-
predictions=predictions, references=references
|
| 61 |
-
)
|
| 62 |
-
|
| 63 |
-
correct = [1 if ref == pred else 0 for ref, pred in zip(references, predictions)]
|
| 64 |
-
accuracy = sum(correct) / len(references)
|
| 65 |
-
|
| 66 |
-
results["accuracy"] = accuracy
|
| 67 |
-
if debug:
|
| 68 |
-
correct_ids = [i for i, c in enumerate(correct) if c == 1]
|
| 69 |
-
results["correct_ids"] = correct_ids
|
| 70 |
-
|
| 71 |
-
return results
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
def save_results(model_name, results_path, dataset, predictions, debug=False):
|
| 75 |
-
if not os.path.exists(results_path):
|
| 76 |
-
# Get the directory part of the file path
|
| 77 |
-
dir_path = os.path.dirname(results_path)
|
| 78 |
-
|
| 79 |
-
# Create all directories in the path (if they don't exist)
|
| 80 |
-
os.makedirs(dir_path, exist_ok=True)
|
| 81 |
-
df = dataset.to_pandas()
|
| 82 |
-
df.drop(columns=["text", "prompt"], inplace=True)
|
| 83 |
-
else:
|
| 84 |
-
df = pd.read_csv(results_path, on_bad_lines="warn")
|
| 85 |
-
|
| 86 |
-
df[model_name] = predictions
|
| 87 |
-
|
| 88 |
-
if debug:
|
| 89 |
-
print(df.head(1))
|
| 90 |
-
|
| 91 |
-
df.to_csv(results_path, index=False)
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
def load_translation_dataset(data_path, tokenizer=None):
|
| 95 |
-
train_data_file = data_path.replace(".tsv", "-train.tsv")
|
| 96 |
-
test_data_file = data_path.replace(".tsv", "-test.tsv")
|
| 97 |
-
|
| 98 |
-
if not os.path.exists(train_data_file):
|
| 99 |
-
print("generating train/test data files")
|
| 100 |
-
dataset = load_dataset(
|
| 101 |
-
"csv", data_files=data_path, delimiter="\t", split="train"
|
| 102 |
-
)
|
| 103 |
-
print(len(dataset))
|
| 104 |
-
dataset = dataset.filter(lambda x: x["chinese"] and x["english"])
|
| 105 |
-
|
| 106 |
-
datasets = dataset.train_test_split(test_size=0.2)
|
| 107 |
-
print(len(dataset))
|
| 108 |
-
|
| 109 |
-
# Convert to pandas DataFrame
|
| 110 |
-
train_df = pd.DataFrame(datasets["train"])
|
| 111 |
-
test_df = pd.DataFrame(datasets["test"])
|
| 112 |
-
|
| 113 |
-
# Save to TSV
|
| 114 |
-
train_df.to_csv(train_data_file, sep="\t", index=False)
|
| 115 |
-
test_df.to_csv(test_data_file, sep="\t", index=False)
|
| 116 |
-
|
| 117 |
-
print("loading train/test data files")
|
| 118 |
-
datasets = load_dataset(
|
| 119 |
-
"csv",
|
| 120 |
-
data_files={"train": train_data_file, "test": test_data_file},
|
| 121 |
-
delimiter="\t",
|
| 122 |
-
)
|
| 123 |
-
|
| 124 |
-
if tokenizer:
|
| 125 |
-
translation_prompt = "Please translate the following Chinese text into English and provide only the translated content, nothing else.\n{}"
|
| 126 |
-
|
| 127 |
-
def formatting_prompts_func(examples):
|
| 128 |
-
inputs = examples["chinese"]
|
| 129 |
-
outputs = examples["english"]
|
| 130 |
-
|
| 131 |
-
messages = [
|
| 132 |
-
{
|
| 133 |
-
"role": "system",
|
| 134 |
-
"content": "You are an expert in translating Chinese to English.",
|
| 135 |
-
},
|
| 136 |
-
None,
|
| 137 |
-
]
|
| 138 |
-
|
| 139 |
-
model_name = os.getenv("MODEL_NAME")
|
| 140 |
-
|
| 141 |
-
# if "mistral" in model_name.lower():
|
| 142 |
-
# messages = messages[1:]
|
| 143 |
-
|
| 144 |
-
texts = []
|
| 145 |
-
prompts = []
|
| 146 |
-
for input, output in zip(inputs, outputs):
|
| 147 |
-
prompt = translation_prompt.format(input)
|
| 148 |
-
messages[-1] = {"role": "user", "content": prompt}
|
| 149 |
-
|
| 150 |
-
prompt = tokenizer.apply_chat_template(
|
| 151 |
-
messages, tokenize=False, add_generation_prompt=True
|
| 152 |
-
)
|
| 153 |
-
prompts.append(prompt)
|
| 154 |
-
texts.append(prompt + output + tokenizer.eos_token)
|
| 155 |
-
return {"text": texts, "prompt": prompts}
|
| 156 |
-
|
| 157 |
-
datasets = datasets.map(
|
| 158 |
-
formatting_prompts_func,
|
| 159 |
-
batched=True,
|
| 160 |
-
)
|
| 161 |
-
|
| 162 |
-
print(datasets)
|
| 163 |
-
return datasets
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
def count_entries_with_max_tokens(entries, max_tokens):
|
| 167 |
-
"""
|
| 168 |
-
Count the number of entries with the max output tokens or more.
|
| 169 |
-
|
| 170 |
-
Parameters:
|
| 171 |
-
entries (list of int): List of token counts for each entry.
|
| 172 |
-
max_tokens (int): The maximum token threshold.
|
| 173 |
-
|
| 174 |
-
Returns:
|
| 175 |
-
int: The number of entries with token counts greater than or equal to max_tokens.
|
| 176 |
-
"""
|
| 177 |
-
count = 0
|
| 178 |
-
for tokens in entries:
|
| 179 |
-
if tokens >= max_tokens:
|
| 180 |
-
count += 1
|
| 181 |
-
return count
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
def detect_repetition_scores(row, col, debug=False):
|
| 185 |
-
# print(f"row: {row}")
|
| 186 |
-
newline_score, repetition_score, total_repetitions = detect_repetitions(
|
| 187 |
-
row[col], debug=debug
|
| 188 |
-
)
|
| 189 |
-
newline_score -= row["ground_truth_ews_score"]
|
| 190 |
-
repetition_score -= row["ground_truth_repetition_score"]
|
| 191 |
-
total_repetitions -= row["ground_truth_total_repetitions"]
|
| 192 |
-
|
| 193 |
-
return pd.Series(
|
| 194 |
-
[
|
| 195 |
-
newline_score if newline_score > 0 else 0,
|
| 196 |
-
repetition_score if repetition_score > 0 else 0,
|
| 197 |
-
total_repetitions if total_repetitions > 0 else 0,
|
| 198 |
-
]
|
| 199 |
-
)
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
def get_metrics(df, max_output_tokens=2048):
|
| 203 |
-
metrics_df = pd.DataFrame(df.columns.T)[2:]
|
| 204 |
-
metrics_df.rename(columns={0: "model"}, inplace=True)
|
| 205 |
-
metrics_df["rpp"] = metrics_df["model"].apply(lambda x: x.split("rpp-")[-1])
|
| 206 |
-
metrics_df["model"] = metrics_df["model"].apply(lambda x: x.split("/rpp-")[0])
|
| 207 |
-
metrics_df.reset_index(inplace=True)
|
| 208 |
-
metrics_df = metrics_df.drop(columns=["index"])
|
| 209 |
-
|
| 210 |
-
tokenizers = {
|
| 211 |
-
model: load_tokenizer(model) for model in metrics_df["model"].unique()
|
| 212 |
-
}
|
| 213 |
-
|
| 214 |
-
meteor = []
|
| 215 |
-
bleu_1 = []
|
| 216 |
-
rouge_l = []
|
| 217 |
-
ews_score = []
|
| 218 |
-
repetition_score = []
|
| 219 |
-
total_repetitions = []
|
| 220 |
-
num_max_output_tokens = []
|
| 221 |
-
columns = df.columns[2:]
|
| 222 |
-
|
| 223 |
-
df[
|
| 224 |
-
[
|
| 225 |
-
"ground_truth_ews_score",
|
| 226 |
-
"ground_truth_repetition_score",
|
| 227 |
-
"ground_truth_total_repetitions",
|
| 228 |
-
]
|
| 229 |
-
] = df["english"].apply(detect_scores)
|
| 230 |
-
|
| 231 |
-
for col in columns:
|
| 232 |
-
metrics = calc_metrics(df["english"], df[col], debug=True)
|
| 233 |
-
print(f"{col}: {metrics}")
|
| 234 |
-
|
| 235 |
-
meteor.append(metrics["meteor"])
|
| 236 |
-
bleu_1.append(metrics["bleu_scores"]["bleu"])
|
| 237 |
-
rouge_l.append(metrics["rouge_scores"]["rougeL"])
|
| 238 |
-
|
| 239 |
-
df[["ews_score", "repetition_score", "total_repetitions"]] = df.apply(
|
| 240 |
-
lambda x: detect_repetition_scores(x, col), axis=1
|
| 241 |
-
)
|
| 242 |
-
ews_score.append(df["ews_score"].mean())
|
| 243 |
-
repetition_score.append(df["repetition_score"].mean())
|
| 244 |
-
total_repetitions.append(df["total_repetitions"].mean())
|
| 245 |
-
|
| 246 |
-
model = col.split("/rpp")[0]
|
| 247 |
-
|
| 248 |
-
new_col = f"ground_truth_tokens-{model}"
|
| 249 |
-
df[new_col] = df["english"].apply(
|
| 250 |
-
lambda x: len(tokenizers[model](x)["input_ids"])
|
| 251 |
-
)
|
| 252 |
-
|
| 253 |
-
new_col = f"output_tokens-{col}"
|
| 254 |
-
df[new_col] = df[col].apply(lambda x: len(tokenizers[model](x)["input_ids"]))
|
| 255 |
-
|
| 256 |
-
num_max_output_tokens.append(
|
| 257 |
-
count_entries_with_max_tokens(df[new_col], max_output_tokens)
|
| 258 |
-
)
|
| 259 |
-
|
| 260 |
-
metrics_df["meteor"] = meteor
|
| 261 |
-
metrics_df["bleu_1"] = bleu_1
|
| 262 |
-
metrics_df["rouge_l"] = rouge_l
|
| 263 |
-
metrics_df["ews_score"] = ews_score
|
| 264 |
-
metrics_df["repetition_score"] = repetition_score
|
| 265 |
-
metrics_df["total_repetitions"] = total_repetitions
|
| 266 |
-
metrics_df["rap"] = metrics_df.apply(
|
| 267 |
-
lambda x: x["meteor"] / math.log10(10 + x["total_repetitions"]), axis=1
|
| 268 |
-
)
|
| 269 |
-
|
| 270 |
-
metrics_df["num_max_output_tokens"] = num_max_output_tokens
|
| 271 |
-
|
| 272 |
-
return metrics_df
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
def plot_metrics(metrics_df, figsize=(14, 5), ylim=(0, 0.44)):
|
| 276 |
-
plt.figure(figsize=figsize)
|
| 277 |
-
df_melted = pd.melt(
|
| 278 |
-
metrics_df, id_vars="model", value_vars=["meteor", "bleu_1", "rouge_l"]
|
| 279 |
-
)
|
| 280 |
-
|
| 281 |
-
barplot = sns.barplot(x="variable", y="value", hue="model", data=df_melted)
|
| 282 |
-
|
| 283 |
-
# Set different hatches for each model
|
| 284 |
-
hatches = ["/", "\\", "|", "-", "+", "x", "o", "O", ".", "*", "//", "\\\\"]
|
| 285 |
-
|
| 286 |
-
# Create a dictionary to map models to hatches
|
| 287 |
-
model_hatches = {
|
| 288 |
-
model: hatches[i % len(hatches)]
|
| 289 |
-
for i, model in enumerate(metrics_df["model"].unique())
|
| 290 |
-
}
|
| 291 |
-
|
| 292 |
-
# Apply hatches based on the model
|
| 293 |
-
num_vars = len(df_melted["variable"].unique())
|
| 294 |
-
for i, bar in enumerate(barplot.patches):
|
| 295 |
-
model = df_melted["model"].iloc[i // num_vars]
|
| 296 |
-
bar.set_hatch(model_hatches[model])
|
| 297 |
-
|
| 298 |
-
# Manually update legend to match the bar hatches
|
| 299 |
-
handles, labels = barplot.get_legend_handles_labels()
|
| 300 |
-
for handle, model in zip(handles, metrics_df["model"].unique()):
|
| 301 |
-
handle.set_hatch(model_hatches[model])
|
| 302 |
-
|
| 303 |
-
barplot.set_xticklabels(["METEOR", "BLEU-1", "ROUGE-L"])
|
| 304 |
-
for p in barplot.patches:
|
| 305 |
-
if p.get_height() == 0:
|
| 306 |
-
continue
|
| 307 |
-
barplot.annotate(
|
| 308 |
-
f"{p.get_height():.2f}",
|
| 309 |
-
(p.get_x() + p.get_width() / 2.0, p.get_height()),
|
| 310 |
-
ha="center",
|
| 311 |
-
va="center",
|
| 312 |
-
xytext=(0, 10),
|
| 313 |
-
textcoords="offset points",
|
| 314 |
-
)
|
| 315 |
-
|
| 316 |
-
barplot.set(ylim=ylim, ylabel="Scores", xlabel="Metrics")
|
| 317 |
-
plt.legend(bbox_to_anchor=(0.5, -0.1), loc="upper center")
|
| 318 |
-
plt.show()
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
def plot_times(perf_df, ylim=0.421):
|
| 322 |
-
# Adjusted code to put "train-time" bars in red at the bottom
|
| 323 |
-
|
| 324 |
-
fig, ax1 = plt.subplots(figsize=(12, 10))
|
| 325 |
-
|
| 326 |
-
color_train = "tab:red"
|
| 327 |
-
color_eval = "orange"
|
| 328 |
-
ax1.set_xlabel("Models")
|
| 329 |
-
ax1.set_ylabel("Time (mins)")
|
| 330 |
-
ax1.set_xticks(range(len(perf_df["model"]))) # Set x-ticks positions
|
| 331 |
-
ax1.set_xticklabels(perf_df["model"], rotation=90)
|
| 332 |
-
|
| 333 |
-
# Plot "train-time" first so it's at the bottom
|
| 334 |
-
ax1.bar(
|
| 335 |
-
perf_df["model"],
|
| 336 |
-
perf_df["train-time(mins)"],
|
| 337 |
-
color=color_train,
|
| 338 |
-
label="train-time",
|
| 339 |
-
)
|
| 340 |
-
|
| 341 |
-
# Then, plot "eval-time" on top of "train-time"
|
| 342 |
-
ax1.bar(
|
| 343 |
-
perf_df["model"],
|
| 344 |
-
perf_df["eval-time(mins)"],
|
| 345 |
-
bottom=perf_df["train-time(mins)"],
|
| 346 |
-
color=color_eval,
|
| 347 |
-
label="eval-time",
|
| 348 |
-
)
|
| 349 |
-
|
| 350 |
-
ax1.tick_params(axis="y")
|
| 351 |
-
ax1.legend(loc="upper left")
|
| 352 |
-
|
| 353 |
-
if "meteor" in perf_df.columns:
|
| 354 |
-
ax2 = ax1.twinx()
|
| 355 |
-
color_meteor = "tab:blue"
|
| 356 |
-
ax2.set_ylabel("METEOR", color=color_meteor)
|
| 357 |
-
ax2.plot(
|
| 358 |
-
perf_df["model"],
|
| 359 |
-
perf_df["meteor"],
|
| 360 |
-
color=color_meteor,
|
| 361 |
-
marker="o",
|
| 362 |
-
label="meteor",
|
| 363 |
-
)
|
| 364 |
-
ax2.tick_params(axis="y", labelcolor=color_meteor)
|
| 365 |
-
ax2.legend(loc="upper right")
|
| 366 |
-
ax2.set_ylim(ax2.get_ylim()[0], ylim)
|
| 367 |
-
|
| 368 |
-
# Show numbers in bars
|
| 369 |
-
for p in ax1.patches:
|
| 370 |
-
height = p.get_height()
|
| 371 |
-
if height == 0: # Skip bars with height 0
|
| 372 |
-
continue
|
| 373 |
-
ax1.annotate(
|
| 374 |
-
f"{height:.2f}",
|
| 375 |
-
(p.get_x() + p.get_width() / 2.0, p.get_y() + height),
|
| 376 |
-
ha="center",
|
| 377 |
-
va="center",
|
| 378 |
-
xytext=(0, -10),
|
| 379 |
-
textcoords="offset points",
|
| 380 |
-
)
|
| 381 |
-
|
| 382 |
-
fig.tight_layout()
|
| 383 |
-
plt.show()
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
def translate_via_llm(text):
|
| 387 |
-
base_url = os.getenv("OPENAI_BASE_URL") or "http://localhost:8000/v1"
|
| 388 |
-
llm = ChatOpenAI(
|
| 389 |
-
model="gpt-4o",
|
| 390 |
-
temperature=0,
|
| 391 |
-
max_tokens=None,
|
| 392 |
-
timeout=None,
|
| 393 |
-
max_retries=2,
|
| 394 |
-
base_url=base_url,
|
| 395 |
-
)
|
| 396 |
-
|
| 397 |
-
prompt = ChatPromptTemplate.from_messages(
|
| 398 |
-
[
|
| 399 |
-
(
|
| 400 |
-
"human",
|
| 401 |
-
"Please translate the following Chinese text into English and provide only the translated content, nothing else.\n{input}",
|
| 402 |
-
),
|
| 403 |
-
]
|
| 404 |
-
)
|
| 405 |
-
|
| 406 |
-
chain = prompt | llm
|
| 407 |
-
response = chain.invoke(
|
| 408 |
-
{
|
| 409 |
-
"input": text,
|
| 410 |
-
}
|
| 411 |
-
)
|
| 412 |
-
return response.content
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
def translate(text, cache_dict):
|
| 416 |
-
if text in cache_dict:
|
| 417 |
-
return cache_dict[text]
|
| 418 |
-
else:
|
| 419 |
-
translated_text = translate_via_llm(text)
|
| 420 |
-
cache_dict[text] = translated_text
|
| 421 |
-
return translated_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
notebooks/00b_Data Analysis_Few_Shots.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
results/mac-results_few_shots_metrics.csv
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1f1a365cbe33bfd36ebae3cb08e0dc4e3c1fe5d2dfbf9f05ddb14df4e5842cd7
|
| 3 |
+
size 12417
|