Spaces:
Build error
Build error
| import os | |
| import sys | |
| import torch | |
| from dotenv import find_dotenv, load_dotenv | |
| found_dotenv = find_dotenv(".env") | |
| if len(found_dotenv) == 0: | |
| found_dotenv = find_dotenv(".env.example") | |
| print(f"loading env vars from: {found_dotenv}") | |
| load_dotenv(found_dotenv, override=False) | |
| path = os.path.dirname(found_dotenv) | |
| print(f"Adding {path} to sys.path") | |
| sys.path.append(path) | |
| from llm_toolkit.llm_utils import * | |
| from llm_toolkit.translation_utils import * | |
| device = check_gpu() | |
| is_cuda = torch.cuda.is_available() | |
| model_name = os.getenv("MODEL_NAME") | |
| adapter_name_or_path = os.getenv("ADAPTER_NAME_OR_PATH") | |
| load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true" | |
| data_path = os.getenv("DATA_PATH") | |
| results_path = os.getenv("RESULTS_PATH") | |
| batch_size = int(os.getenv("BATCH_SIZE", 1)) | |
| use_english_datasets = os.getenv("USE_ENGLISH_DATASETS") == "true" | |
| max_new_tokens = int(os.getenv("MAX_NEW_TOKENS", 2048)) | |
| start_num_shots = int(os.getenv("START_NUM_SHOTS", 0)) | |
| print( | |
| model_name, | |
| adapter_name_or_path, | |
| load_in_4bit, | |
| data_path, | |
| results_path, | |
| use_english_datasets, | |
| max_new_tokens, | |
| batch_size, | |
| ) | |
| if is_cuda: | |
| torch.cuda.empty_cache() | |
| gpu_stats = torch.cuda.get_device_properties(0) | |
| start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
| max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
| print(f"(0) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
| print(f"{start_gpu_memory} GB of memory reserved.") | |
| torch.cuda.empty_cache() | |
| model, tokenizer = load_model( | |
| model_name, load_in_4bit=load_in_4bit, adapter_name_or_path=adapter_name_or_path | |
| ) | |
| if is_cuda: | |
| gpu_stats = torch.cuda.get_device_properties(0) | |
| start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
| max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
| print(f"(2) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
| print(f"{start_gpu_memory} GB of memory reserved.") | |
| def on_num_shots_step_completed(model_name, dataset, predictions): | |
| save_results( | |
| model_name, | |
| results_path, | |
| dataset, | |
| predictions, | |
| ) | |
| metrics = calc_metrics(dataset["english"], predictions, debug=True) | |
| print(f"{model_name} metrics: {metrics}") | |
| if adapter_name_or_path is not None: | |
| model_name += "/" + adapter_name_or_path.split("/")[-1] | |
| def evaluate_model_with_num_shots( | |
| model, | |
| tokenizer, | |
| model_name, | |
| data_path, | |
| start_num_shots=0, | |
| range_num_shots=[0, 1, 3, 5, 10, 50], | |
| batch_size=1, | |
| max_new_tokens=2048, | |
| device="cuda", | |
| ): | |
| print(f"Evaluating model: {model_name} on {device}") | |
| for num_shots in range_num_shots: | |
| if num_shots < start_num_shots: | |
| continue | |
| print(f"*** Evaluating with num_shots: {num_shots}") | |
| datasets = load_translation_dataset(data_path, tokenizer, num_shots=num_shots) | |
| print_row_details(datasets["test"].to_pandas()) | |
| predictions = eval_model( | |
| model, | |
| tokenizer, | |
| datasets["test"], | |
| device=device, | |
| batch_size=batch_size, | |
| max_new_tokens=max_new_tokens, | |
| ) | |
| model_name_with_rp = f"{model_name}/shots-{num_shots:02d}" | |
| try: | |
| on_num_shots_step_completed( | |
| model_name_with_rp, | |
| datasets["test"], | |
| predictions, | |
| ) | |
| except Exception as e: | |
| print(e) | |
| evaluate_model_with_num_shots( | |
| model, | |
| tokenizer, | |
| model_name, | |
| data_path, | |
| batch_size=batch_size, | |
| max_new_tokens=max_new_tokens, | |
| device=device, | |
| start_num_shots=start_num_shots, | |
| ) | |
| if is_cuda: | |
| gpu_stats = torch.cuda.get_device_properties(0) | |
| start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
| max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
| print(f"(3) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
| print(f"{start_gpu_memory} GB of memory reserved.") | |