Spaces:
Runtime error
Runtime error
File size: 9,432 Bytes
1761643 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import base64
import os
from threading import Thread
import time
import json
from dotenv import load_dotenv, find_dotenv
import requests
found_dotenv = find_dotenv(".env")
if len(found_dotenv) == 0:
found_dotenv = find_dotenv(".env.example")
print(f"loading env vars from: {found_dotenv}")
load_dotenv(found_dotenv, override=False)
from openai import OpenAI
def make_request_with_retry(url, headers={}, data=None, retries=5, suppress_data=False):
start = time.time()
for _ in range(retries):
try:
print(
f"Making request to {url}{f' with data: {data}' if data and not suppress_data else ''}"
)
response = (
requests.post(url, headers=headers, data=json.dumps(data))
if data
else requests.get(url, headers=headers)
)
response_code = response.status_code
print(f"Response code: {response_code}")
if response_code != 200:
raise Exception(f"Failed to make a successful request: {response.text}")
end = time.time()
print(f"Duration: {end - start:.3f} seconds")
return response
except Exception as e:
print(f"An error occurred: {str(e)}")
time.sleep(1)
raise Exception(f"Failed to make a successful request after {retries} retries")
garments_json_file = os.environ.get("GARMENTS_FILE_PATH")
garments_json = json.load(open(garments_json_file))
system_instructions = f"""As a virtual assistant for an online clothing store, your tasks involve interpreting customer inquiries to identify whether they are looking for product recommendations, wish to virtually try on apparel, or intend to purchase. Provide relevant product IDs based on their current or past interactions. Consider detailed inquiries as virtual try-on requests and intentions to buy as 'add-to-cart' actions. Handle cart inquiries with a 'view-cart' action. For purchase readiness, proceed to 'checkout', issuing a gratitude message with the total cost and item details. If intentions are vague, request clarification and classify as "unknown".
Please output valid JSON, strictly following this Pydantic specification:
class Response(BaseModel):
intent: Literal["recommendation", "try-on", "add-to-cart", "view-cart", "checkout", "unknown"]
products: conlist(min_length=0, max_length=4)
message: Optional[str] = None
Do not include any message in the response unless the customer's intent is "checkout" or "unknown".
When providing recommendations, please consider the customer's gender, which may be deduced from the pronouns in their initial message in the chat history. For example, avoid suggesting women's clothing to a man and vice versa.
JSON data:
{garments_json}
"""
class LLMRecommender:
def __init__(self):
self.model = os.environ.get("OPENAI_MODEL_NAME")
self.client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
print(f"Creating recommender with model: {self.model}")
self.login()
def login(self, user_name="Jerry", base64_image=None):
self.user_name = user_name.split()[0]
gender = None
if base64_image:
api_key = os.environ["OPENAI_API_KEY"]
# Prepare the image content for payload
image_content = {
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
}
# The text content remains the same
text_content = {
"type": "text",
"text": "What's the gender of the person in the photo? Please respond with 'male' or 'female' only.",
}
# Combine the text content with the image contents
combined_contents = [text_content] + [image_content]
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}",
}
data = {
"model": "gpt-4-vision-preview",
"messages": [{"role": "user", "content": combined_contents}],
"max_tokens": 4000,
}
response = make_request_with_retry(
"https://api.openai.com/v1/chat/completions",
headers,
data,
suppress_data=True,
)
response_json = response.json()
try:
gender = response_json["choices"][0]["message"]["content"]
print(gender)
except KeyError:
print("The 'choices' key is missing in the response. Full response:")
print(response_json)
if gender:
pronouns = "he/him/his" if gender == "male" else "she/her/hers"
self.messages = [
{"role": "system", "content": system_instructions},
{
"role": "user",
"content": f"Hello, I am {self.user_name}{f' and my pronouns are {pronouns}.' if gender else '.'}",
},
]
print(f"LLMRecommender - {self.user_name} logged in")
print(self.messages[1])
return gender
# Function to add a message to the conversation history
def add_message(self, role, content):
self.messages.append({"role": role, "content": content})
def invoke(self, user_prompt, callback=None):
print("LLMRecommender - invoke: ", user_prompt)
user_prompt = user_prompt.strip()
if not user_prompt:
print("LLMRecommender - ignoring empty user_prompt")
return ""
start = time.time()
self.add_message("user", user_prompt)
retries = 5
for _ in range(retries):
try:
chat_completion, *_ = self.client.chat.completions.create(
messages=self.messages,
model=self.model,
response_format={"type": "json_object"},
temperature=0.2,
n=1,
).choices
break
except Exception as e:
print(f"An error occurred: {str(e)}")
time.sleep(1)
else:
raise Exception(
f"Failed to make a successful request after {retries} retries"
)
end = time.time()
content = chat_completion.message.content
self.add_message("assistant", content)
print("Chat completion response:", content)
print(f"Duration: {end - start:.3f} seconds")
structured_response = json.loads(content)
if "products" in structured_response:
structured_response["products"] = structured_response["products"][:4]
if "products" in structured_response:
products = structured_response["products"][:4]
structured_response["products"] = [
product if isinstance(product, str) else product["id"]
for product in products
]
if callback:
callback(structured_response)
return structured_response
def ainvoke(self, input, callback=None):
t = Thread(
target=self.invoke,
args=(input, callback),
)
t.start()
self.task = t
def wait(self):
if self.task:
self.task.join()
self.task = None
def get_garment(self, garment_id):
for garment in garments_json:
product = garment["product"]
if product["id"] == garment_id:
return product
return None
def get_garments(self):
products = []
for garment in garments_json:
product = garment["product"]
products.append(product)
return products
if __name__ == "__main__":
llmr = LLMRecommender()
def test(image_path=None):
base64_image = None
name = "Sam Smith"
if image_path:
name = image_path.split("/")[-1].split(".")[0]
with open(image_path, "rb") as image_file:
base64_image = base64.b64encode(image_file.read()).decode("utf-8")
llmr.login(name, base64_image)
llmr.ainvoke("hi", lambda x: print(json.dumps(x, indent=4)))
llmr.wait()
response = llmr.invoke("party wear")
print(json.dumps(response, indent=4))
llmr.ainvoke("try 2", lambda x: print(json.dumps(x, indent=4)))
llmr.wait()
response = llmr.invoke("add 2 to cart")
print(json.dumps(response, indent=4))
response = llmr.invoke("show more info on 8")
print(json.dumps(response, indent=4))
response = llmr.invoke("I'd like to buy this")
print(json.dumps(response, indent=4))
response = llmr.invoke("view cart")
print(json.dumps(response, indent=4))
response = llmr.invoke("proceed to payment")
print(json.dumps(response, indent=4))
response = llmr.invoke("view cart")
print(json.dumps(response, indent=4))
start = time.time()
argv = os.sys.argv
if len(argv) > 1:
test(argv[1])
else:
test("./data/Assets/models/female.png")
test("./data/Assets/models/male.png")
test()
end = time.time()
print(f"Duration: {end - start:.3f} seconds")
|