File size: 9,833 Bytes
1761643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
"""Main entrypoint for the app."""

import base64
from io import BytesIO
import os
from numpy import ndarray
import requests
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from urllib.parse import urlparse
import gradio as gr

from style_master.LLMRecommender import LLMRecommender, make_request_with_retry
from PIL import Image

static_dir = os.environ.get("STATIC_FILES_PATH") or "data/Assets"


def ndarray_to_base64(image):
    # Convert ndarray image to PIL image
    pil_image = Image.fromarray(image)

    # Create a BytesIO object
    buffered = BytesIO()

    # Save PIL image to buffer
    pil_image.save(buffered, format="PNG")

    # Get image bytes
    img_bytes = buffered.getvalue()

    # Encode bytes to base64 and decode to string
    img_base64 = base64.b64encode(img_bytes).decode()

    return img_base64


# Function to encode the image
def encode_image(image_path_or_url_or_ndarray):
    if isinstance(image_path_or_url_or_ndarray, ndarray):
        image_base64 = ndarray_to_base64(image_path_or_url_or_ndarray)
    elif image_path_or_url_or_ndarray.startswith("http"):
        response = requests.get(image_path_or_url_or_ndarray)
        buffered = BytesIO(response.content)
        image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
    else:
        with open(image_path_or_url_or_ndarray, "rb") as image_file:
            image_base64 = base64.b64encode(image_file.read()).decode("utf-8")

    return image_base64


mock_ootd_api_responses = {
    "sessions": {
        "profile": {
            "id": "123",
            "name": "Sam",
        }
    },
    "try-ons": {"try_on_images": []},
}


def call_ootd_api(name, data):
    print(f"Calling {name} with data: {data if name != 'sessions' else '***'}")
    return mock_ootd_api_responses.get(name, {})
    # url = f"{ootd_server_url}/{name}"

    # headers = {"Content-Type": "application/json"}
    # response = make_request_with_retry(
    #     url, headers, data, suppress_data=name == "sessions"
    # )
    # response_json = response.json()
    # return response_json


llmr = LLMRecommender()


def call_try_on_api(garment_ids):
    data = {"session_id": f"{profile['id']}", "garment_ids": garment_ids}
    response = call_ootd_api("try-ons", data)

    # if len(garment_ids) == 2:
    #     products = [llmr.get_garment(id) for id in garment_ids]
    #     if products[0]["category"] != products[1]["category"]:
    #         data2 = {
    #             "session_id": f"{profile['id']}",
    #             "model_filename": response["try_on_images"][0]["filename"],
    #             "garment_ids": [garment_ids[1]],
    #         }
    #         response2 = call_ootd_api("try-ons", data2)
    #         response["try_on_images"] += response2["try_on_images"]
    #         response["try_on_images"][-1]["extra_garment_id"] = garment_ids[0]
    return response


def login(image_file_or_ndarray):
    print("login:", type(image_file_or_ndarray))
    data = {"encodedData": encode_image(image_file_or_ndarray)}
    response = call_ootd_api("sessions", data)
    profile = response["profile"]
    print(response)

    profile["gender"] = llmr.login(profile["name"], data["encodedData"])
    try_on_images_folder = f"{static_dir}/try-ons/{profile['id']}"
    os.makedirs(try_on_images_folder, exist_ok=True)

    return profile, try_on_images_folder


share_gradio_app = os.environ.get("SHARE_GRADIO_APP") == "true"
ootd_server_url = os.environ.get("OOTD_SERVER_URL")


def predict(message, history):
    print("predict:", message)

    response = llmr.invoke(message)
    print(response)
    if response["intent"] in ["unknown", "checkout"]:
        partial_message = f"{response['message']}"
    elif response["intent"] == "recommendation":
        partial_message = f"Here are {len(response['products'])} recommendation{'s' if len(response['products']) > 1 else ''} for you:"
    elif response["intent"] == "try-on":
        partial_message = f"For {len(response['products'])} garment{'s' if len(response['products']) > 1 else ''} you've selected:"
    elif response["intent"] == "add-to-cart":
        partial_message = f"Added {len(response['products'])} item{'s' if len(response['products']) > 1 else ''} into your cart:"
    elif response["intent"] == "view-cart":
        partial_message = f"There {'are' if len(response['products']) > 1 else 'is'} {len(response['products'])} item{'s' if len(response['products']) > 1 else ''} in your cart{':' if len(response['products']) > 0 else '.'}"
    else:
        partial_message = f"{response}"

    if "products" in response and response["products"]:
        partial_message += "\n\n"
        for id in response["products"]:
            product = llmr.get_garment(id)
            url = product["image"]

            parsed_url = urlparse(url)

            title = f"#{product['id']} {product['name']}: ${product['price']}"
            partial_message += f"1. [{title}]({url})\n"
            partial_message += f"![{title}]({parsed_url.path})\n"

    if response["intent"] == "try-on":
        response = call_try_on_api(response["products"])
        print(response)
        partial_message += f"\n\nwe have created {len(response['try_on_images'])} try-on image{'s:' if len(response['try_on_images']) > 1 else '.'}"
        partial_message += "\n\n"
        for try_on_image in response["try_on_images"]:
            url = try_on_image["url"]
            file_name = try_on_image["filename"]
            file_path = f"{try_on_images_folder}/{file_name}"

            response = make_request_with_retry(url)
            with open(file_path, "wb") as f:
                f.write(response.content)

            title = f"{profile['name']} wearing "

            extra_garment_id = try_on_image.get("extra_garment_id")
            if extra_garment_id:
                extra_product = llmr.get_garment(extra_garment_id)
                title += f"{extra_product['name']} and "

            id = try_on_image["garment_id"]
            product = llmr.get_garment(id)
            title += f"{product['name']}"

            partial_message += f"1. [{title}]({url})\n"

            parsed_url = urlparse(url)
            partial_message += f"![{title}]({parsed_url.path})\n"

    yield partial_message


app = FastAPI()


model = os.environ.get("OPENAI_MODEL_NAME")
href = "https://platform.openai.com/docs/models"
title = "Style Master"

questions_file_path = os.environ.get("QUESTIONS_FILE_PATH")

# Open the file for reading
with open(questions_file_path, "r") as file:
    examples = file.readlines()
    examples = [example.strip() for example in examples]

description = f"""\
<div align="left">
<p> Powered by: <a href="{href}">{model}</a></p>
</div>
"""

css = """
.container {
    height: 100vh;
}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
#image_upload .touch-none{display: flex}
"""


def get_all_garments():
    print("get_all_garments")
    return [
        (garment["image"], f"#{garment['id']} {garment['name']}: ${garment['price']}")
        for garment in llmr.get_garments()
    ]


def upload_model_image(model_path=None, model_image=None):
    print("upload_model_image:", model_path if model_path else type(model_image))

    global profile, try_on_images_folder
    profile, try_on_images_folder = login(model_path or model_image)
    print(profile)

    if model_path is None:
        gender = profile["gender"]
        model_path = f"{static_dir}/models/{gender}.png"

    print("refresh model:", model_path)
    image = Image.open(model_path)
    return image


def visible_component():
    return gr.update(visible=True), gr.update(visible=True)


def use_preset_model_image(model_image):
    image = upload_model_image(model_image=model_image)
    x, y = visible_component()
    return image, x, y


with gr.Blocks(title=title, css=css) as demo:
    with gr.Tab(f"Chat with {title}", visible=False) as main_tab:
        with gr.Column(elem_classes=["container"]):
            # Setting up the Gradio chat interface.
            chat_ui = gr.ChatInterface(
                predict,
                # title=title,
                description=description,
                examples=examples,
                cache_examples=False,
            )

            chat_ui.clear_btn.click(lambda: llmr.login(profile["name"]))

    with gr.Tab("View Catalogue", visible=False) as catalogue_tab:
        gallery = gr.Gallery(
            get_all_garments,
            label="Generated images",
            show_label=False,
            elem_id="gallery",
            columns=[5],
            rows=[4],
            object_fit="contain",
            height=800,
        )

    with gr.Tab("Change Model"):
        with gr.Column():
            model_image = gr.Image(elem_id="image_upload", width=600)
            upload_button = gr.UploadButton(
                "Upload Image", file_types=["image"], file_count="single"
            )
            upload_button.upload(upload_model_image, upload_button, model_image).then(
                fn=visible_component, inputs=None, outputs=[main_tab, catalogue_tab]
            )
            example = gr.Examples(
                label="Preset Models",
                inputs=model_image,
                outputs=[model_image, main_tab, catalogue_tab],
                fn=use_preset_model_image,
                run_on_click=True,
                examples_per_page=2,
                examples=[
                    os.path.join(static_dir, "models/female.png"),
                    os.path.join(static_dir, "models/male.png"),
                ],
            )


demo.queue()

app.mount(
    "/static", StaticFiles(directory=static_dir, follow_symlink=True), name="static"
)
app = gr.mount_gradio_app(app, demo, path="/")