Spaces:
Build error
Build error
Upload prompt.py
Browse files- competition/prompt.py +161 -0
competition/prompt.py
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
|
| 2 |
+
from datasets import Dataset
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from sklearn.model_selection import train_test_split
|
| 5 |
+
from peft import get_peft_model, LoraConfig, TaskType
|
| 6 |
+
import evaluate
|
| 7 |
+
import numpy as np
|
| 8 |
+
from tqdm import tqdm
|
| 9 |
+
|
| 10 |
+
# Load the dataset
|
| 11 |
+
file_path = 'train_en.csv'
|
| 12 |
+
dataset = pd.read_csv(file_path)
|
| 13 |
+
|
| 14 |
+
# Map labels to expected responses
|
| 15 |
+
label_mapping = {
|
| 16 |
+
"Yes": 0,
|
| 17 |
+
"No": 1,
|
| 18 |
+
"It doesn't matter": 2,
|
| 19 |
+
"Unimportant": 2,
|
| 20 |
+
"Incorrect questioning": 3,
|
| 21 |
+
"Correct answers": 4
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
# Apply label mapping
|
| 25 |
+
dataset['label'] = dataset['label'].map(label_mapping)
|
| 26 |
+
|
| 27 |
+
# Handle NaN values: Drop rows where label is NaN
|
| 28 |
+
dataset = dataset.dropna(subset=['label'])
|
| 29 |
+
|
| 30 |
+
# Ensure labels are integers
|
| 31 |
+
dataset['label'] = dataset['label'].astype(int)
|
| 32 |
+
|
| 33 |
+
# Format puzzle, truth, text into the prompt
|
| 34 |
+
prompt_template = """You are the host of a situational guessing game. The rules of the game are as follows:
|
| 35 |
+
|
| 36 |
+
1. Participants will receive a riddle that describes a simple yet difficult to understand event.
|
| 37 |
+
2. The host knows the answer, which is the solution to the riddle.
|
| 38 |
+
3. Participants can ask any closed-ended questions to uncover the truth of the event.
|
| 39 |
+
4. For each question, the host will respond with one of the following five options based on the actual situation: Yes, No, Unimportant, Correct answer, or Incorrect questioning. The criteria for each response are as follows:
|
| 40 |
+
- If the riddle and answer can provide an answer to the question, respond with: Yes or No
|
| 41 |
+
- If the riddle and answer cannot directly or indirectly infer an answer to the question, respond with: Unimportant
|
| 42 |
+
- If the participant's question is not a closed-ended question or is difficult to understand, respond with: Incorrect questioning
|
| 43 |
+
- If the participant's question essentially reveals the truth of the answer, respond with: Correct answer
|
| 44 |
+
5. The response must not include any additional information, nor should any word be omitted from the options. For example, "No" cannot be abbreviated to "N".
|
| 45 |
+
|
| 46 |
+
Please strictly follow these rules when answering the participant's questions.
|
| 47 |
+
|
| 48 |
+
Riddle: {}
|
| 49 |
+
Answer: {}
|
| 50 |
+
Participant's question: {}
|
| 51 |
+
"""
|
| 52 |
+
|
| 53 |
+
dataset['combined_text'] = dataset.apply(
|
| 54 |
+
lambda row: prompt_template.format(row['puzzle'], row['truth'], row['text']),
|
| 55 |
+
axis=1
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
# Split the dataset into training and validation sets
|
| 59 |
+
train_df, val_df = train_test_split(dataset, test_size=0.2, random_state=42)
|
| 60 |
+
|
| 61 |
+
# Convert the dataframes to datasets
|
| 62 |
+
train_dataset = Dataset.from_pandas(train_df)
|
| 63 |
+
val_dataset = Dataset.from_pandas(val_df)
|
| 64 |
+
|
| 65 |
+
# Load the tokenizer and model
|
| 66 |
+
model_name = "meta-llama/Meta-Llama-3-8B" # Replace with the actual model name
|
| 67 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 68 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=5)
|
| 69 |
+
|
| 70 |
+
# Add a padding token if it's not already present
|
| 71 |
+
if tokenizer.pad_token is None:
|
| 72 |
+
tokenizer.add_special_tokens({'pad_token': tokenizer.eos_token})
|
| 73 |
+
model.resize_token_embeddings(len(tokenizer))
|
| 74 |
+
tokenizer.pad_token = tokenizer.eos_token # Set the padding token explicitly
|
| 75 |
+
|
| 76 |
+
# Ensure the padding token is set correctly in the model configuration
|
| 77 |
+
model.config.pad_token_id = tokenizer.pad_token_id
|
| 78 |
+
|
| 79 |
+
# Tokenize the data
|
| 80 |
+
def tokenize_function(examples):
|
| 81 |
+
return tokenizer(examples['combined_text'], truncation=True, padding='max_length', max_length=512)
|
| 82 |
+
|
| 83 |
+
train_dataset = train_dataset.map(tokenize_function, batched=True, num_proc=4) # Use multiprocessing
|
| 84 |
+
val_dataset = val_dataset.map(tokenize_function, batched=True, num_proc=4)
|
| 85 |
+
|
| 86 |
+
# Set the format for PyTorch
|
| 87 |
+
train_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
|
| 88 |
+
val_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
|
| 89 |
+
|
| 90 |
+
# Define LoRA configuration
|
| 91 |
+
lora_config = LoraConfig(
|
| 92 |
+
task_type=TaskType.SEQ_CLS,
|
| 93 |
+
r=16,
|
| 94 |
+
lora_alpha=16,
|
| 95 |
+
target_modules=["q_proj", "v_proj"],
|
| 96 |
+
lora_dropout=0.05,
|
| 97 |
+
bias="none"
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
# Apply LoRA to the model
|
| 101 |
+
model = get_peft_model(model, lora_config)
|
| 102 |
+
model.print_trainable_parameters()
|
| 103 |
+
|
| 104 |
+
# Training arguments
|
| 105 |
+
training_args = TrainingArguments(
|
| 106 |
+
output_dir='./results',
|
| 107 |
+
learning_rate=1e-4,
|
| 108 |
+
lr_scheduler_type="linear",
|
| 109 |
+
warmup_ratio=0.1,
|
| 110 |
+
max_grad_norm=0.3,
|
| 111 |
+
per_device_train_batch_size=8, # Increase batch size if memory allows
|
| 112 |
+
per_device_eval_batch_size=8,
|
| 113 |
+
num_train_epochs=3,
|
| 114 |
+
weight_decay=0.001,
|
| 115 |
+
evaluation_strategy="epoch",
|
| 116 |
+
save_strategy="epoch",
|
| 117 |
+
load_best_model_at_end=True,
|
| 118 |
+
report_to="wandb",
|
| 119 |
+
fp16=True,
|
| 120 |
+
gradient_checkpointing=True,
|
| 121 |
+
gradient_accumulation_steps=2, # Adjust based on memory constraints
|
| 122 |
+
dataloader_num_workers=4,
|
| 123 |
+
logging_steps=100,
|
| 124 |
+
save_total_limit=2,
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
def compute_metrics(eval_pred):
|
| 128 |
+
precision_metric = evaluate.load("precision")
|
| 129 |
+
recall_metric = evaluate.load("recall")
|
| 130 |
+
f1_metric = evaluate.load("f1")
|
| 131 |
+
accuracy_metric = evaluate.load("accuracy")
|
| 132 |
+
|
| 133 |
+
logits, labels = eval_pred
|
| 134 |
+
predictions = np.argmax(logits, axis=-1)
|
| 135 |
+
|
| 136 |
+
precision = precision_metric.compute(predictions=predictions, references=labels, average="weighted")["precision"]
|
| 137 |
+
recall = recall_metric.compute(predictions=predictions, references=labels, average="weighted")["recall"]
|
| 138 |
+
f1 = f1_metric.compute(predictions=predictions, references=labels, average="weighted")["f1"]
|
| 139 |
+
accuracy = accuracy_metric.compute(predictions=predictions, references=labels)["accuracy"]
|
| 140 |
+
|
| 141 |
+
return {"precision": precision, "recall": recall, "f1-score": f1, 'accuracy': accuracy}
|
| 142 |
+
|
| 143 |
+
# Initialize the Trainer
|
| 144 |
+
trainer = Trainer(
|
| 145 |
+
model=model,
|
| 146 |
+
args=training_args,
|
| 147 |
+
train_dataset=train_dataset,
|
| 148 |
+
eval_dataset=val_dataset,
|
| 149 |
+
compute_metrics=compute_metrics
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
# Train the model with progress bar
|
| 153 |
+
trainer.train()
|
| 154 |
+
|
| 155 |
+
# Save the model
|
| 156 |
+
model.save_pretrained('trained_llama_model')
|
| 157 |
+
tokenizer.save_pretrained('trained_llama_model')
|
| 158 |
+
|
| 159 |
+
# Evaluate the model with progress bar
|
| 160 |
+
eval_results = trainer.evaluate()
|
| 161 |
+
print(eval_results)
|