Spaces:
Build error
Build error
| # Copyright 2024 the LlamaFactory team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import base64 | |
| import io | |
| import json | |
| import os | |
| import uuid | |
| from typing import TYPE_CHECKING, AsyncGenerator, Dict, List, Optional, Tuple | |
| from ..data import Role as DataRole | |
| from ..extras.logging import get_logger | |
| from ..extras.packages import is_fastapi_available, is_pillow_available, is_requests_available | |
| from .common import dictify, jsonify | |
| from .protocol import ( | |
| ChatCompletionMessage, | |
| ChatCompletionResponse, | |
| ChatCompletionResponseChoice, | |
| ChatCompletionResponseUsage, | |
| ChatCompletionStreamResponse, | |
| ChatCompletionStreamResponseChoice, | |
| Finish, | |
| Function, | |
| FunctionCall, | |
| Role, | |
| ScoreEvaluationResponse, | |
| ) | |
| if is_fastapi_available(): | |
| from fastapi import HTTPException, status | |
| if is_pillow_available(): | |
| from PIL import Image | |
| if is_requests_available(): | |
| import requests | |
| if TYPE_CHECKING: | |
| from numpy.typing import NDArray | |
| from ..chat import ChatModel | |
| from .protocol import ChatCompletionRequest, ScoreEvaluationRequest | |
| logger = get_logger(__name__) | |
| ROLE_MAPPING = { | |
| Role.USER: DataRole.USER.value, | |
| Role.ASSISTANT: DataRole.ASSISTANT.value, | |
| Role.SYSTEM: DataRole.SYSTEM.value, | |
| Role.FUNCTION: DataRole.FUNCTION.value, | |
| Role.TOOL: DataRole.OBSERVATION.value, | |
| } | |
| def _process_request( | |
| request: "ChatCompletionRequest", | |
| ) -> Tuple[List[Dict[str, str]], Optional[str], Optional[str], Optional["NDArray"]]: | |
| logger.info("==== request ====\n{}".format(json.dumps(dictify(request), indent=2, ensure_ascii=False))) | |
| if len(request.messages) == 0: | |
| raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid length") | |
| if request.messages[0].role == Role.SYSTEM: | |
| system = request.messages.pop(0).content | |
| else: | |
| system = None | |
| if len(request.messages) % 2 == 0: | |
| raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...") | |
| input_messages = [] | |
| image = None | |
| for i, message in enumerate(request.messages): | |
| if i % 2 == 0 and message.role not in [Role.USER, Role.TOOL]: | |
| raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role") | |
| elif i % 2 == 1 and message.role not in [Role.ASSISTANT, Role.FUNCTION]: | |
| raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role") | |
| if message.role == Role.ASSISTANT and isinstance(message.tool_calls, list) and len(message.tool_calls): | |
| tool_calls = [ | |
| {"name": tool_call.function.name, "arguments": tool_call.function.arguments} | |
| for tool_call in message.tool_calls | |
| ] | |
| content = json.dumps(tool_calls, ensure_ascii=False) | |
| input_messages.append({"role": ROLE_MAPPING[Role.FUNCTION], "content": content}) | |
| elif isinstance(message.content, list): | |
| for input_item in message.content: | |
| if input_item.type == "text": | |
| input_messages.append({"role": ROLE_MAPPING[message.role], "content": input_item.text}) | |
| else: | |
| image_url = input_item.image_url.url | |
| if image_url.startswith("data:image"): # base64 image | |
| image_data = base64.b64decode(image_url.split(",", maxsplit=1)[1]) | |
| image_path = io.BytesIO(image_data) | |
| elif os.path.isfile(image_url): # local file | |
| image_path = open(image_url, "rb") | |
| else: # web uri | |
| image_path = requests.get(image_url, stream=True).raw | |
| image = Image.open(image_path).convert("RGB") | |
| else: | |
| input_messages.append({"role": ROLE_MAPPING[message.role], "content": message.content}) | |
| tool_list = request.tools | |
| if isinstance(tool_list, list) and len(tool_list): | |
| try: | |
| tools = json.dumps([dictify(tool.function) for tool in tool_list], ensure_ascii=False) | |
| except json.JSONDecodeError: | |
| raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid tools") | |
| else: | |
| tools = None | |
| return input_messages, system, tools, image | |
| def _create_stream_chat_completion_chunk( | |
| completion_id: str, | |
| model: str, | |
| delta: "ChatCompletionMessage", | |
| index: Optional[int] = 0, | |
| finish_reason: Optional["Finish"] = None, | |
| ) -> str: | |
| choice_data = ChatCompletionStreamResponseChoice(index=index, delta=delta, finish_reason=finish_reason) | |
| chunk = ChatCompletionStreamResponse(id=completion_id, model=model, choices=[choice_data]) | |
| return jsonify(chunk) | |
| async def create_chat_completion_response( | |
| request: "ChatCompletionRequest", chat_model: "ChatModel" | |
| ) -> "ChatCompletionResponse": | |
| completion_id = "chatcmpl-{}".format(uuid.uuid4().hex) | |
| input_messages, system, tools, image = _process_request(request) | |
| responses = await chat_model.achat( | |
| input_messages, | |
| system, | |
| tools, | |
| image, | |
| do_sample=request.do_sample, | |
| temperature=request.temperature, | |
| top_p=request.top_p, | |
| max_new_tokens=request.max_tokens, | |
| num_return_sequences=request.n, | |
| stop=request.stop, | |
| ) | |
| prompt_length, response_length = 0, 0 | |
| choices = [] | |
| for i, response in enumerate(responses): | |
| if tools: | |
| result = chat_model.engine.template.extract_tool(response.response_text) | |
| else: | |
| result = response.response_text | |
| if isinstance(result, list): | |
| tool_calls = [] | |
| for tool in result: | |
| function = Function(name=tool[0], arguments=tool[1]) | |
| tool_calls.append(FunctionCall(id="call_{}".format(uuid.uuid4().hex), function=function)) | |
| response_message = ChatCompletionMessage(role=Role.ASSISTANT, tool_calls=tool_calls) | |
| finish_reason = Finish.TOOL | |
| else: | |
| response_message = ChatCompletionMessage(role=Role.ASSISTANT, content=result) | |
| finish_reason = Finish.STOP if response.finish_reason == "stop" else Finish.LENGTH | |
| choices.append(ChatCompletionResponseChoice(index=i, message=response_message, finish_reason=finish_reason)) | |
| prompt_length = response.prompt_length | |
| response_length += response.response_length | |
| usage = ChatCompletionResponseUsage( | |
| prompt_tokens=prompt_length, | |
| completion_tokens=response_length, | |
| total_tokens=prompt_length + response_length, | |
| ) | |
| return ChatCompletionResponse(id=completion_id, model=request.model, choices=choices, usage=usage) | |
| async def create_stream_chat_completion_response( | |
| request: "ChatCompletionRequest", chat_model: "ChatModel" | |
| ) -> AsyncGenerator[str, None]: | |
| completion_id = "chatcmpl-{}".format(uuid.uuid4().hex) | |
| input_messages, system, tools, image = _process_request(request) | |
| if tools: | |
| raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Cannot stream function calls.") | |
| if request.n > 1: | |
| raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Cannot stream multiple responses.") | |
| yield _create_stream_chat_completion_chunk( | |
| completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(role=Role.ASSISTANT, content="") | |
| ) | |
| async for new_token in chat_model.astream_chat( | |
| input_messages, | |
| system, | |
| tools, | |
| image, | |
| do_sample=request.do_sample, | |
| temperature=request.temperature, | |
| top_p=request.top_p, | |
| max_new_tokens=request.max_tokens, | |
| stop=request.stop, | |
| ): | |
| if len(new_token) != 0: | |
| yield _create_stream_chat_completion_chunk( | |
| completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(content=new_token) | |
| ) | |
| yield _create_stream_chat_completion_chunk( | |
| completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(), finish_reason=Finish.STOP | |
| ) | |
| yield "[DONE]" | |
| async def create_score_evaluation_response( | |
| request: "ScoreEvaluationRequest", chat_model: "ChatModel" | |
| ) -> "ScoreEvaluationResponse": | |
| if len(request.messages) == 0: | |
| raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request") | |
| scores = await chat_model.aget_scores(request.messages, max_length=request.max_length) | |
| return ScoreEvaluationResponse(model=request.model, scores=scores) | |