Spaces:
Build error
Build error
| import os | |
| import pandas as pd | |
| import torch | |
| from unsloth import FastLanguageModel, is_bfloat16_supported | |
| from trl import SFTTrainer | |
| from transformers import TrainingArguments, TextStreamer | |
| from llm_toolkit.translation_utils import * | |
| from llamafactory.chat import ChatModel | |
| print(f"loading {__file__}") | |
| def get_model_names( | |
| model_name, save_method="merged_4bit_forced", quantization_method="q5_k_m" | |
| ): | |
| hub_model = model_name.split("/")[-1] + "-MAC-" | |
| local_model = "models/" + hub_model | |
| return { | |
| "local": local_model + save_method, | |
| "local-gguf": local_model + quantization_method, | |
| "hub": hub_model + save_method, | |
| "hub-gguf": hub_model + "gguf-" + quantization_method, | |
| } | |
| def load_model( | |
| model_name, | |
| max_seq_length=2048, | |
| dtype=None, | |
| load_in_4bit=False, | |
| template="chatml", | |
| adapter_name_or_path=None, | |
| ): | |
| print(f"loading model: {model_name}") | |
| if adapter_name_or_path: | |
| args = dict( | |
| model_name_or_path=model_name, | |
| adapter_name_or_path=adapter_name_or_path, # load the saved LoRA adapters | |
| template=template, # same to the one in training | |
| finetuning_type="lora", # same to the one in training | |
| quantization_bit=4, # load 4-bit quantized model | |
| ) | |
| chat_model = ChatModel(args) | |
| return chat_model.engine.model, chat_model.engine.tokenizer | |
| model, tokenizer = FastLanguageModel.from_pretrained( | |
| model_name=model_name, # YOUR MODEL YOU USED FOR TRAINING | |
| max_seq_length=max_seq_length, | |
| dtype=dtype, | |
| load_in_4bit=load_in_4bit, | |
| trust_remote_code=True, | |
| ) | |
| FastLanguageModel.for_inference(model) | |
| return model, tokenizer | |
| def test_model(model, tokenizer, prompt): | |
| inputs = tokenizer( | |
| [prompt], | |
| return_tensors="pt", | |
| ).to("cuda") | |
| text_streamer = TextStreamer(tokenizer) | |
| _ = model.generate( | |
| **inputs, max_new_tokens=128, streamer=text_streamer, use_cache=True | |
| ) | |
| def load_trainer( | |
| model, | |
| tokenizer, | |
| dataset, | |
| num_train_epochs, | |
| max_seq_length=2048, | |
| fp16=False, | |
| bf16=False, | |
| output_dir="./outputs", | |
| ): | |
| model = FastLanguageModel.get_peft_model( | |
| model, | |
| r=16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128 | |
| target_modules=[ | |
| "q_proj", | |
| "k_proj", | |
| "v_proj", | |
| "o_proj", | |
| "gate_proj", | |
| "up_proj", | |
| "down_proj", | |
| ], | |
| lora_alpha=16, | |
| lora_dropout=0, # Supports any, but = 0 is optimized | |
| bias="none", # Supports any, but = "none" is optimized | |
| # [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes! | |
| use_gradient_checkpointing="unsloth", # True or "unsloth" for very long context | |
| random_state=3407, | |
| use_rslora=False, # We support rank stabilized LoRA | |
| loftq_config=None, # And LoftQ | |
| ) | |
| trainer = SFTTrainer( | |
| model=model, | |
| tokenizer=tokenizer, | |
| train_dataset=dataset, | |
| dataset_text_field="text", | |
| max_seq_length=max_seq_length, | |
| dataset_num_proc=2, | |
| packing=False, # Can make training 5x faster for short sequences. | |
| args=TrainingArguments( | |
| per_device_train_batch_size=2, | |
| gradient_accumulation_steps=4, | |
| warmup_steps=5, | |
| num_train_epochs=num_train_epochs, | |
| learning_rate=2e-4, | |
| fp16=not is_bfloat16_supported(), | |
| bf16=is_bfloat16_supported(), | |
| logging_steps=100, | |
| optim="adamw_8bit", | |
| weight_decay=0.01, | |
| lr_scheduler_type="linear", | |
| seed=3407, | |
| output_dir=output_dir, | |
| ), | |
| ) | |
| return trainer | |