Spaces:
Build error
Build error
| import os | |
| import sys | |
| from dotenv import find_dotenv, load_dotenv | |
| found_dotenv = find_dotenv(".env") | |
| if len(found_dotenv) == 0: | |
| found_dotenv = find_dotenv(".env.example") | |
| print(f"loading env vars from: {found_dotenv}") | |
| load_dotenv(found_dotenv, override=False) | |
| path = os.path.dirname(found_dotenv) | |
| print(f"Adding {path} to sys.path") | |
| sys.path.append(path) | |
| from llm_toolkit.llm_utils import * | |
| from llm_toolkit.logical_reasoning_utils import * | |
| model_name = os.getenv("MODEL_NAME") | |
| data_path = os.getenv("LOGICAL_REASONING_DATA_PATH") | |
| results_path = os.getenv("LOGICAL_REASONING_RESULTS_PATH") | |
| max_new_tokens = int(os.getenv("MAX_NEW_TOKENS", 2048)) | |
| print( | |
| model_name, | |
| data_path, | |
| results_path, | |
| max_new_tokens, | |
| ) | |
| def on_num_shots_step_completed(model_name, dataset, predictions, results_path): | |
| save_results( | |
| model_name, | |
| results_path, | |
| dataset, | |
| predictions, | |
| ) | |
| metrics = calc_metrics(dataset["label"], predictions, debug=True) | |
| print(f"{model_name} metrics: {metrics}") | |
| def evaluate_model_with_num_shots( | |
| model_name, | |
| datasets, | |
| results_path=None, | |
| range_num_shots=[0], | |
| max_new_tokens=2048, | |
| result_column_name=None, | |
| ): | |
| print(f"Evaluating model: {model_name}") | |
| eval_dataset = datasets["test"].to_pandas() | |
| print_row_details(eval_dataset) | |
| for num_shots in range_num_shots: | |
| print(f"*** Evaluating with num_shots: {num_shots}") | |
| predictions = eval_openai( | |
| eval_dataset, | |
| model=model_name, | |
| max_new_tokens=max_new_tokens, | |
| num_shots=num_shots, | |
| train_dataset=datasets["train"].to_pandas(), | |
| ) | |
| model_name_with_shorts = ( | |
| result_column_name | |
| if result_column_name | |
| else f"{model_name}/shots-{num_shots:02d}" | |
| ) | |
| try: | |
| on_num_shots_step_completed( | |
| model_name_with_shorts, eval_dataset, predictions, results_path | |
| ) | |
| except Exception as e: | |
| print(e) | |
| if __name__ == "__main__": | |
| datasets = load_logical_reasoning_dataset( | |
| data_path, | |
| ) | |
| if len(sys.argv) > 1: | |
| num = int(sys.argv[1]) | |
| if num > 0: | |
| print(f"--- evaluating {num} entries") | |
| datasets["test"] = datasets["test"].select(range(num)) | |
| evaluate_model_with_num_shots( | |
| model_name, | |
| datasets, | |
| results_path=results_path, | |
| max_new_tokens=max_new_tokens, | |
| ) | |