Spaces:
Build error
Build error
| import os | |
| import sys | |
| import torch | |
| from dotenv import find_dotenv, load_dotenv | |
| from llamafactory.chat import ChatModel | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig | |
| found_dotenv = find_dotenv(".env") | |
| if len(found_dotenv) == 0: | |
| found_dotenv = find_dotenv(".env.example") | |
| print(f"loading env vars from: {found_dotenv}") | |
| load_dotenv(found_dotenv, override=False) | |
| path = os.path.dirname(found_dotenv) | |
| print(f"Adding {path} to sys.path") | |
| sys.path.append(path) | |
| from llm_toolkit.translation_utils import * | |
| model_name = os.getenv("MODEL_NAME") | |
| adapter_name_or_path = os.getenv("ADAPTER_NAME_OR_PATH") | |
| load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true" | |
| data_path = os.getenv("DATA_PATH") | |
| results_path = os.getenv("RESULTS_PATH") | |
| print(model_name, adapter_name_or_path, load_in_4bit, data_path, results_path) | |
| def load_model( | |
| model_name, | |
| max_seq_length=2048, | |
| dtype=torch.bfloat16, | |
| load_in_4bit=False, | |
| adapter_name_or_path=None, | |
| ): | |
| print(f"loading model: {model_name}") | |
| if adapter_name_or_path: | |
| template = "llama3" if "llama-3" in model_name.lower() else "chatml" | |
| args = dict( | |
| model_name_or_path=model_name, | |
| adapter_name_or_path=adapter_name_or_path, # load the saved LoRA adapters | |
| template=template, # same to the one in training | |
| finetuning_type="lora", # same to the one in training | |
| quantization_bit=4 if load_in_4bit else None, # load 4-bit quantized model | |
| ) | |
| chat_model = ChatModel(args) | |
| return chat_model.engine.model, chat_model.engine.tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
| bnb_config = BitsAndBytesConfig( | |
| load_in_4bit=load_in_4bit, | |
| bnb_4bit_quant_type="nf4", | |
| bnb_4bit_use_double_quant=False, | |
| bnb_4bit_compute_dtype=dtype, | |
| ) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| quantization_config=bnb_config, | |
| torch_dtype=dtype, | |
| trust_remote_code=True, | |
| device_map="auto", | |
| ) | |
| return model, tokenizer | |
| gpu_stats = torch.cuda.get_device_properties(0) | |
| start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
| max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
| print(f"(1) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
| print(f"{start_gpu_memory} GB of memory reserved.") | |
| model, tokenizer = load_model( | |
| model_name, load_in_4bit=load_in_4bit, adapter_name_or_path=adapter_name_or_path | |
| ) | |
| gpu_stats = torch.cuda.get_device_properties(0) | |
| start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
| max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
| print(f"(2) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
| print(f"{start_gpu_memory} GB of memory reserved.") | |
| datasets = load_translation_dataset(data_path, tokenizer) | |
| print("Evaluating model: " + model_name) | |
| predictions = eval_model(model, tokenizer, datasets["test"]) | |
| gpu_stats = torch.cuda.get_device_properties(0) | |
| start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
| max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
| print(f"(3) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
| print(f"{start_gpu_memory} GB of memory reserved.") | |
| if adapter_name_or_path is not None: | |
| model_name += "_" + adapter_name_or_path.split("/")[-1] | |
| save_results( | |
| model_name, | |
| results_path, | |
| datasets["test"], | |
| predictions, | |
| debug=True, | |
| ) | |
| metrics = calc_metrics(datasets["test"]["english"], predictions, debug=True) | |
| print(metrics) | |