Spaces:
Build error
Build error
| import os | |
| import re | |
| import pandas as pd | |
| import evaluate | |
| import seaborn as sns | |
| import matplotlib.pyplot as plt | |
| from datasets import load_dataset | |
| from langchain_openai import ChatOpenAI | |
| from langchain_core.prompts import ChatPromptTemplate | |
| from tqdm import tqdm | |
| print(f"loading {__file__}") | |
| bleu = evaluate.load("bleu") | |
| rouge = evaluate.load("rouge") | |
| meteor = evaluate.load("meteor") | |
| accuracy = evaluate.load("accuracy") | |
| def extract_answer(text, debug=False): | |
| if text: | |
| # Remove the begin and end tokens | |
| text = re.sub( | |
| r".*?(assistant|\[/INST\]).+?\b", "", text, flags=re.DOTALL | re.MULTILINE | |
| ) | |
| if debug: | |
| print("--------\nstep 1:", text) | |
| text = re.sub(r"<.+?>.*", "", text, flags=re.DOTALL | re.MULTILINE) | |
| if debug: | |
| print("--------\nstep 2:", text) | |
| text = re.sub( | |
| r".*?end_header_id\|>\n\n", "", text, flags=re.DOTALL | re.MULTILINE | |
| ) | |
| if debug: | |
| print("--------\nstep 3:", text) | |
| return text | |
| def calc_metrics(references, predictions, debug=False): | |
| assert len(references) == len( | |
| predictions | |
| ), f"lengths are difference: {len(references)} != {len(predictions)}" | |
| predictions = [extract_answer(text) for text in predictions] | |
| correct = [1 if ref == pred else 0 for ref, pred in zip(references, predictions)] | |
| accuracy = sum(correct) / len(references) | |
| results = {"accuracy": accuracy} | |
| if debug: | |
| correct_ids = [i for i, c in enumerate(correct) if c == 1] | |
| results["correct_ids"] = correct_ids | |
| results["meteor"] = meteor.compute(predictions=predictions, references=references)[ | |
| "meteor" | |
| ] | |
| results["bleu_scores"] = bleu.compute( | |
| predictions=predictions, references=references, max_order=4 | |
| ) | |
| results["rouge_scores"] = rouge.compute( | |
| predictions=predictions, references=references | |
| ) | |
| return results | |
| def save_results(model_name, results_path, dataset, predictions, debug=False): | |
| if not os.path.exists(results_path): | |
| # Get the directory part of the file path | |
| dir_path = os.path.dirname(results_path) | |
| # Create all directories in the path (if they don't exist) | |
| os.makedirs(dir_path, exist_ok=True) | |
| df = dataset.to_pandas() | |
| df.drop(columns=["text", "prompt"], inplace=True) | |
| else: | |
| df = pd.read_csv(results_path, on_bad_lines="warn") | |
| df[model_name] = predictions | |
| if debug: | |
| print(df.head(1)) | |
| df.to_csv(results_path, index=False) | |
| def load_translation_dataset(data_path, tokenizer=None): | |
| train_data_file = data_path.replace(".tsv", "-train.tsv") | |
| test_data_file = data_path.replace(".tsv", "-test.tsv") | |
| if not os.path.exists(train_data_file): | |
| print("generating train/test data files") | |
| dataset = load_dataset( | |
| "csv", data_files=data_path, delimiter="\t", split="train" | |
| ) | |
| print(len(dataset)) | |
| dataset = dataset.filter(lambda x: x["chinese"] and x["english"]) | |
| datasets = dataset.train_test_split(test_size=0.2) | |
| print(len(dataset)) | |
| # Convert to pandas DataFrame | |
| train_df = pd.DataFrame(datasets["train"]) | |
| test_df = pd.DataFrame(datasets["test"]) | |
| # Save to TSV | |
| train_df.to_csv(train_data_file, sep="\t", index=False) | |
| test_df.to_csv(test_data_file, sep="\t", index=False) | |
| print("loading train/test data files") | |
| datasets = load_dataset( | |
| "csv", | |
| data_files={"train": train_data_file, "test": test_data_file}, | |
| delimiter="\t", | |
| ) | |
| if tokenizer: | |
| translation_prompt = "Please translate the following Chinese text into English and provide only the translated content, nothing else.\n{}" | |
| def formatting_prompts_func(examples): | |
| inputs = examples["chinese"] | |
| outputs = examples["english"] | |
| messages = [ | |
| { | |
| "role": "system", | |
| "content": "You are an expert in translating Chinese to English.", | |
| }, | |
| None, | |
| ] | |
| model_name = os.getenv("MODEL_NAME") | |
| if "mistral" in model_name.lower(): | |
| messages = messages[1:] | |
| texts = [] | |
| prompts = [] | |
| for input, output in zip(inputs, outputs): | |
| prompt = translation_prompt.format(input) | |
| messages[-1] = {"role": "user", "content": prompt} | |
| prompt = tokenizer.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| prompts.append(prompt) | |
| texts.append(prompt + output + tokenizer.eos_token) | |
| return {"text": texts, "prompt": prompts} | |
| datasets = datasets.map( | |
| formatting_prompts_func, | |
| batched=True, | |
| ) | |
| print(datasets) | |
| return datasets | |
| def eval_model(model, tokenizer, eval_dataset): | |
| total = len(eval_dataset) | |
| predictions = [] | |
| for i in tqdm(range(total)): | |
| inputs = tokenizer( | |
| eval_dataset["prompt"][i : i + 1], | |
| return_tensors="pt", | |
| ).to("cuda") | |
| outputs = model.generate(**inputs, max_new_tokens=4096, use_cache=False) | |
| decoded_output = tokenizer.batch_decode(outputs) | |
| debug = i == 0 | |
| decoded_output = [ | |
| extract_answer(output, debug=debug) for output in decoded_output | |
| ] | |
| predictions.extend(decoded_output) | |
| return predictions | |
| def save_model( | |
| model, | |
| tokenizer, | |
| include_gguf=True, | |
| include_merged=True, | |
| publish=True, | |
| ): | |
| try: | |
| token = os.getenv("HF_TOKEN") or None | |
| model_name = os.getenv("MODEL_NAME") | |
| save_method = "lora" | |
| quantization_method = "q5_k_m" | |
| model_names = get_model_names( | |
| model_name, save_method=save_method, quantization_method=quantization_method | |
| ) | |
| model.save_pretrained(model_names["local"]) | |
| tokenizer.save_pretrained(model_names["local"]) | |
| if publish: | |
| model.push_to_hub( | |
| model_names["hub"], | |
| token=token, | |
| ) | |
| tokenizer.push_to_hub( | |
| model_names["hub"], | |
| token=token, | |
| ) | |
| if include_merged: | |
| model.save_pretrained_merged( | |
| model_names["local"] + "-merged", tokenizer, save_method=save_method | |
| ) | |
| if publish: | |
| model.push_to_hub_merged( | |
| model_names["hub"] + "-merged", | |
| tokenizer, | |
| save_method="lora", | |
| token="", | |
| ) | |
| if include_gguf: | |
| model.save_pretrained_gguf( | |
| model_names["local-gguf"], | |
| tokenizer, | |
| quantization_method=quantization_method, | |
| ) | |
| if publish: | |
| model.push_to_hub_gguf( | |
| model_names["hub-gguf"], | |
| tokenizer, | |
| quantization_method=quantization_method, | |
| token=token, | |
| ) | |
| except Exception as e: | |
| print(e) | |
| def get_metrics(df): | |
| metrics_df = pd.DataFrame(df.columns.T)[2:] | |
| metrics_df.rename(columns={0: "model"}, inplace=True) | |
| metrics_df["model"] = metrics_df["model"].apply(lambda x: x.split("/")[-1]) | |
| metrics_df.reset_index(inplace=True) | |
| metrics_df = metrics_df.drop(columns=["index"]) | |
| accuracy = [] | |
| meteor = [] | |
| bleu_1 = [] | |
| rouge_l = [] | |
| all_metrics = [] | |
| for col in df.columns[2:]: | |
| metrics = calc_metrics(df["english"], df[col], debug=True) | |
| print(f"{col}: {metrics}") | |
| accuracy.append(metrics["accuracy"]) | |
| meteor.append(metrics["meteor"]) | |
| bleu_1.append(metrics["bleu_scores"]["bleu"]) | |
| rouge_l.append(metrics["rouge_scores"]["rougeL"]) | |
| all_metrics.append(metrics) | |
| metrics_df["accuracy"] = accuracy | |
| metrics_df["meteor"] = meteor | |
| metrics_df["bleu_1"] = bleu_1 | |
| metrics_df["rouge_l"] = rouge_l | |
| metrics_df["all_metrics"] = all_metrics | |
| return metrics_df | |
| def plot_metrics(metrics_df, figsize=(14, 5), ylim=(0, 0.44)): | |
| plt.figure(figsize=figsize) | |
| df_melted = pd.melt( | |
| metrics_df, id_vars="model", value_vars=["meteor", "bleu_1", "rouge_l"] | |
| ) | |
| barplot = sns.barplot(x="variable", y="value", hue="model", data=df_melted) | |
| # Set different hatches for each model | |
| hatches = ["/", "\\", "|", "-", "+", "x", "o", "O", ".", "*", "//", "\\\\"] | |
| # Create a dictionary to map models to hatches | |
| model_hatches = { | |
| model: hatches[i % len(hatches)] | |
| for i, model in enumerate(metrics_df["model"].unique()) | |
| } | |
| # Apply hatches based on the model | |
| num_vars = len(df_melted["variable"].unique()) | |
| for i, bar in enumerate(barplot.patches): | |
| model = df_melted["model"].iloc[i // num_vars] | |
| bar.set_hatch(model_hatches[model]) | |
| # Manually update legend to match the bar hatches | |
| handles, labels = barplot.get_legend_handles_labels() | |
| for handle, model in zip(handles, metrics_df["model"].unique()): | |
| handle.set_hatch(model_hatches[model]) | |
| barplot.set_xticklabels(["METEOR", "BLEU-1", "ROUGE-L"]) | |
| for p in barplot.patches: | |
| if p.get_height() == 0: | |
| continue | |
| barplot.annotate( | |
| f"{p.get_height():.2f}", | |
| (p.get_x() + p.get_width() / 2.0, p.get_height()), | |
| ha="center", | |
| va="center", | |
| xytext=(0, 10), | |
| textcoords="offset points", | |
| ) | |
| barplot.set(ylim=ylim, ylabel="Scores", xlabel="Metrics") | |
| plt.legend(bbox_to_anchor=(0.5, -0.1), loc="upper center") | |
| plt.show() | |
| def plot_times(perf_df, ylim=0.421): | |
| # Adjusted code to put "train-time" bars in red at the bottom | |
| fig, ax1 = plt.subplots(figsize=(12, 10)) | |
| color_train = "tab:red" | |
| color_eval = "orange" | |
| ax1.set_xlabel("Models") | |
| ax1.set_ylabel("Time (mins)") | |
| ax1.set_xticks(range(len(perf_df["model"]))) # Set x-ticks positions | |
| ax1.set_xticklabels(perf_df["model"], rotation=90) | |
| # Plot "train-time" first so it's at the bottom | |
| ax1.bar( | |
| perf_df["model"], | |
| perf_df["train-time(mins)"], | |
| color=color_train, | |
| label="train-time", | |
| ) | |
| # Then, plot "eval-time" on top of "train-time" | |
| ax1.bar( | |
| perf_df["model"], | |
| perf_df["eval-time(mins)"], | |
| bottom=perf_df["train-time(mins)"], | |
| color=color_eval, | |
| label="eval-time", | |
| ) | |
| ax1.tick_params(axis="y") | |
| ax1.legend(loc="upper left") | |
| if "meteor" in perf_df.columns: | |
| ax2 = ax1.twinx() | |
| color_meteor = "tab:blue" | |
| ax2.set_ylabel("METEOR", color=color_meteor) | |
| ax2.plot( | |
| perf_df["model"], | |
| perf_df["meteor"], | |
| color=color_meteor, | |
| marker="o", | |
| label="meteor", | |
| ) | |
| ax2.tick_params(axis="y", labelcolor=color_meteor) | |
| ax2.legend(loc="upper right") | |
| ax2.set_ylim(ax2.get_ylim()[0], ylim) | |
| # Show numbers in bars | |
| for p in ax1.patches: | |
| height = p.get_height() | |
| if height == 0: # Skip bars with height 0 | |
| continue | |
| ax1.annotate( | |
| f"{height:.2f}", | |
| (p.get_x() + p.get_width() / 2.0, p.get_y() + height), | |
| ha="center", | |
| va="center", | |
| xytext=(0, -10), | |
| textcoords="offset points", | |
| ) | |
| fig.tight_layout() | |
| plt.show() | |
| def translate_via_llm(text): | |
| base_url = os.getenv("OPENAI_BASE_URL") or "http://localhost:8000/v1" | |
| llm = ChatOpenAI( | |
| model="gpt-4o", | |
| temperature=0, | |
| max_tokens=None, | |
| timeout=None, | |
| max_retries=2, | |
| base_url=base_url, | |
| ) | |
| prompt = ChatPromptTemplate.from_messages( | |
| [ | |
| ( | |
| "human", | |
| "Please translate the following Chinese text into English and provide only the translated content, nothing else.\n{input}", | |
| ), | |
| ] | |
| ) | |
| chain = prompt | llm | |
| response = chain.invoke( | |
| { | |
| "input": text, | |
| } | |
| ) | |
| return response.content | |
| def translate(text, cache_dict): | |
| if text in cache_dict: | |
| return cache_dict[text] | |
| else: | |
| translated_text = translate_via_llm(text) | |
| cache_dict[text] = translated_text | |
| return translated_text | |