Spaces:
Build error
Build error
| import os | |
| import sys | |
| from unsloth import FastLanguageModel, is_bfloat16_supported | |
| import torch | |
| from trl import SFTTrainer | |
| from transformers import TrainingArguments | |
| from dotenv import find_dotenv, load_dotenv | |
| found_dotenv = find_dotenv(".env") | |
| if len(found_dotenv) == 0: | |
| found_dotenv = find_dotenv(".env.example") | |
| print(f"loading env vars from: {found_dotenv}") | |
| load_dotenv(found_dotenv, override=False) | |
| path = os.path.dirname(found_dotenv) | |
| print(f"Adding {path} to sys.path") | |
| sys.path.append(path) | |
| from llm_toolkit.logical_reasoning_utils import * | |
| from llm_toolkit.llm_utils import * | |
| model_name = os.getenv("MODEL_NAME") | |
| token = os.getenv("HF_TOKEN") or None | |
| load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true" | |
| local_model = os.getenv("LOCAL_MODEL") or "gemma-2-9b-it-lora" | |
| hub_model = os.getenv("HUB_MODEL") or "inflaton-ai/gemma-2-9b-it-lora" | |
| num_train_epochs = int(os.getenv("NUM_TRAIN_EPOCHS") or 0) | |
| data_path = os.getenv("LOGICAL_REASONING_DATA_PATH") | |
| results_path = os.getenv("LOGICAL_REASONING_RESULTS_PATH") | |
| print(model_name, load_in_4bit, data_path, results_path) | |
| max_seq_length = 4096 # Choose any! We auto support RoPE Scaling internally! | |
| dtype = ( | |
| None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ | |
| ) | |
| gpu_stats = torch.cuda.get_device_properties(0) | |
| start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
| max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
| print(f"(1) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
| print(f"{start_gpu_memory} GB of memory reserved.") | |
| model, tokenizer = FastLanguageModel.from_pretrained( | |
| model_name=model_name, | |
| max_seq_length=max_seq_length, | |
| dtype=dtype, | |
| load_in_4bit=load_in_4bit, | |
| ) | |
| gpu_stats = torch.cuda.get_device_properties(0) | |
| start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
| max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
| print(f"(2) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
| print(f"{start_gpu_memory} GB of memory reserved.") | |
| model = FastLanguageModel.get_peft_model( | |
| model, | |
| r=16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128 | |
| target_modules=[ | |
| "q_proj", | |
| "k_proj", | |
| "v_proj", | |
| "o_proj", | |
| "gate_proj", | |
| "up_proj", | |
| "down_proj", | |
| ], | |
| lora_alpha=16, | |
| lora_dropout=0, # Supports any, but = 0 is optimized | |
| bias="none", # Supports any, but = "none" is optimized | |
| # [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes! | |
| use_gradient_checkpointing="unsloth", # True or "unsloth" for very long context | |
| random_state=3407, | |
| use_rslora=False, # We support rank stabilized LoRA | |
| loftq_config=None, # And LoftQ | |
| ) | |
| gpu_stats = torch.cuda.get_device_properties(0) | |
| start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
| max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
| print(f"(3) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
| print(f"{start_gpu_memory} GB of memory reserved.") | |
| dataset = load_logical_reasoning_dataset(data_path, tokenizer=tokenizer, using_p1=False) | |
| print_row_details(dataset["train"].to_pandas()) | |
| trainer = SFTTrainer( | |
| model=model, | |
| tokenizer=tokenizer, | |
| train_dataset=dataset["train"], | |
| dataset_text_field="train_text", | |
| max_seq_length=max_seq_length, | |
| dataset_num_proc=2, | |
| packing=False, # Can make training 5x faster for short sequences. | |
| args=TrainingArguments( | |
| per_device_train_batch_size=2, | |
| gradient_accumulation_steps=4, | |
| warmup_steps=5, | |
| max_steps=20000, | |
| learning_rate=2e-4, | |
| fp16=not is_bfloat16_supported(), | |
| bf16=is_bfloat16_supported(), | |
| logging_steps=100, | |
| optim="adamw_8bit", | |
| weight_decay=0.01, | |
| lr_scheduler_type="linear", | |
| seed=3407, | |
| output_dir="outputs", | |
| ), | |
| ) | |
| gpu_stats = torch.cuda.get_device_properties(0) | |
| start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
| max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
| print(f"(4) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
| print(f"{start_gpu_memory} GB of memory reserved.") | |
| trainer_stats = trainer.train() | |
| # @title Show final memory and time stats | |
| used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
| used_memory_for_lora = round(used_memory - start_gpu_memory, 3) | |
| used_percentage = round(used_memory / max_memory * 100, 3) | |
| lora_percentage = round(used_memory_for_lora / max_memory * 100, 3) | |
| print(f"(5) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
| print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.") | |
| print( | |
| f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training." | |
| ) | |
| print(f"Peak reserved memory = {used_memory} GB.") | |
| print(f"Peak reserved memory for training = {used_memory_for_lora} GB.") | |
| print(f"Peak reserved memory % of max memory = {used_percentage} %.") | |
| print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.") | |
| model.save_pretrained(local_model) # Local saving | |
| tokenizer.save_pretrained(local_model) | |
| print("Evaluating fine-tuned model: " + model_name) | |
| FastLanguageModel.for_inference(model) # Enable native 2x faster inference | |
| predictions = eval_model(model, tokenizer, dataset["test"]) | |
| gpu_stats = torch.cuda.get_device_properties(0) | |
| start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
| max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
| print(f"(6) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
| print(f"{start_gpu_memory} GB of memory reserved.") | |
| save_results( | |
| model_name + "(unsloth_finetuned)", | |
| results_path, | |
| dataset["test"], | |
| predictions, | |
| debug=True, | |
| ) | |
| metrics = calc_metrics(dataset["test"]["label"], predictions, debug=True) | |
| print(metrics) | |
| model.push_to_hub(hub_model, token=token) # Online saving | |
| tokenizer.push_to_hub(hub_model, token=token) # Online saving | |