from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer from threading import Thread import gradio as gr import json import subprocess import os def install_vllm_from_patch(): script_path = "./install.sh" if not os.path.exists(script_path): print(f"Error: install.sh is not exist!") return False try: print(f"begin run install.sh") result = subprocess.run( ["bash", script_path], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text = True, timeout = 300 ) print(f"result: {result}") return True except Exception as e: print(f"Error: {str(e)}") return False #install vllm from patch file #install_vllm_from_patch() # load model and tokenizer model_name = "inclusionAI/Ling-mini-2.0" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto", trust_remote_code=True ).eval() def respond( message, history: list[dict[str, str]], system_message, max_tokens, # temperature, # top_p ): """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ #client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b") if len(system_message) == 0: system_message = "## 你是谁\n\n我是百灵(Ling),一个由蚂蚁集团(Ant Group) 开发的AI智能助手" messages = [{"role": "system", "content": system_message}] messages.extend(history) messages.append({"role": "user", "content": message}) print(f"system_prompt: {json.dumps(messages, ensure_ascii=False, indent=2)}") text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) model_inputs = tokenizer([text], return_tensors="pt", return_token_type_ids=False).to(model.device) print(f"max_new_tokens={max_tokens}") model_inputs.update( dict(max_new_tokens=max_tokens, streamer = streamer, # temperature = 0.7, # top_p = 1, # presence_penalty = 1.5, ) ) # Start a separate thread for model generation to allow streaming output thread = Thread( target=model.generate, kwargs=model_inputs, ) thread.start() # Accumulate and yield text tokens as they are generated acc_text = "" for text_token in streamer: acc_text += text_token # Append the generated token to the accumulated text yield acc_text # Yield the accumulated text # Ensure the generation thread completes thread.join() """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ chatbot = gr.ChatInterface( respond, type="messages", additional_inputs=[ gr.Textbox(value="", label="System message"), gr.Slider(minimum=1, maximum=32000, value=512, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p (nucleus sampling)", # ), ], ) with gr.Blocks() as demo: # with gr.Sidebar(): # gr.LoginButton() chatbot.render() if __name__ == "__main__": demo.launch()