Spaces:
Sleeping
Sleeping
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer | |
from threading import Thread | |
import gradio as gr | |
import json | |
import subprocess | |
import os | |
def install_vllm_from_patch(): | |
script_path = "./install.sh" | |
if not os.path.exists(script_path): | |
print(f"Error: install.sh is not exist!") | |
return False | |
try: | |
print(f"begin run install.sh") | |
result = subprocess.run( | |
["bash", script_path], | |
check=True, | |
stdout=subprocess.PIPE, | |
stderr=subprocess.PIPE, | |
text = True, | |
timeout = 300 | |
) | |
print(f"result: {result}") | |
return True | |
except Exception as e: | |
print(f"Error: {str(e)}") | |
return False | |
#install vllm from patch file | |
#install_vllm_from_patch() | |
# load model and tokenizer | |
model_name = "inclusionAI/Ling-mini-2.0" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype="auto", | |
device_map="auto", | |
trust_remote_code=True | |
).eval() | |
def respond( | |
message, | |
history: list[dict[str, str]], | |
system_message, | |
max_tokens, | |
# temperature, | |
# top_p | |
): | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
#client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b") | |
if len(system_message) == 0: | |
system_message = "## 你是谁\n\n我是百灵(Ling),一个由蚂蚁集团(Ant Group) 开发的AI智能助手" | |
messages = [{"role": "system", "content": system_message}] | |
messages.extend(history) | |
messages.append({"role": "user", "content": message}) | |
print(f"system_prompt: {json.dumps(messages, ensure_ascii=False, indent=2)}") | |
text = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
model_inputs = tokenizer([text], return_tensors="pt", return_token_type_ids=False).to(model.device) | |
print(f"max_new_tokens={max_tokens}") | |
model_inputs.update( | |
dict(max_new_tokens=max_tokens, | |
streamer = streamer, | |
# temperature = 0.7, | |
# top_p = 1, | |
# presence_penalty = 1.5, | |
) | |
) | |
# Start a separate thread for model generation to allow streaming output | |
thread = Thread( | |
target=model.generate, | |
kwargs=model_inputs, | |
) | |
thread.start() | |
# Accumulate and yield text tokens as they are generated | |
acc_text = "" | |
for text_token in streamer: | |
acc_text += text_token # Append the generated token to the accumulated text | |
yield acc_text # Yield the accumulated text | |
# Ensure the generation thread completes | |
thread.join() | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
chatbot = gr.ChatInterface( | |
respond, | |
type="messages", | |
additional_inputs=[ | |
gr.Textbox(value="", label="System message"), | |
gr.Slider(minimum=1, maximum=32000, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
], | |
) | |
with gr.Blocks() as demo: | |
# with gr.Sidebar(): | |
# gr.LoginButton() | |
chatbot.render() | |
if __name__ == "__main__": | |
demo.launch() | |