|
''' |
|
calculate the PSNR and SSIM. |
|
same as MATLAB's results |
|
''' |
|
import os |
|
import math |
|
import numpy as np |
|
import cv2 |
|
import glob |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
folder_GT = '/home/carraz/datasets/val_set5/Set5' |
|
folder_Gen = '/home/carraz/nESRGANplus/results/RRDB_PSNR_x4/set5' |
|
|
|
crop_border = 4 |
|
suffix = '' |
|
test_Y = False |
|
|
|
PSNR_all = [] |
|
SSIM_all = [] |
|
img_list = sorted(glob.glob(folder_GT + '/*')) |
|
|
|
if test_Y: |
|
print('Testing Y channel.') |
|
else: |
|
print('Testing RGB channels.') |
|
|
|
for i, img_path in enumerate(img_list): |
|
base_name = os.path.splitext(os.path.basename(img_path))[0] |
|
im_GT = cv2.imread(img_path) / 255. |
|
im_Gen = cv2.imread(os.path.join(folder_Gen, base_name + suffix + '.png')) / 255. |
|
|
|
if test_Y and im_GT.shape[2] == 3: |
|
im_GT_in = bgr2ycbcr(im_GT) |
|
im_Gen_in = bgr2ycbcr(im_Gen) |
|
else: |
|
im_GT_in = im_GT |
|
im_Gen_in = im_Gen |
|
|
|
|
|
if im_GT_in.ndim == 3: |
|
cropped_GT = im_GT_in[crop_border:-crop_border, crop_border:-crop_border, :] |
|
cropped_Gen = im_Gen_in[crop_border:-crop_border, crop_border:-crop_border, :] |
|
elif im_GT_in.ndim == 2: |
|
cropped_GT = im_GT_in[crop_border:-crop_border, crop_border:-crop_border] |
|
cropped_Gen = im_Gen_in[crop_border:-crop_border, crop_border:-crop_border] |
|
else: |
|
raise ValueError('Wrong image dimension: {}. Should be 2 or 3.'.format(im_GT_in.ndim)) |
|
|
|
|
|
PSNR = calculate_psnr(cropped_GT * 255, cropped_Gen * 255) |
|
|
|
SSIM = calculate_ssim(cropped_GT * 255, cropped_Gen * 255) |
|
print('{:3d} - {:25}. \tPSNR: {:.6f} dB, \tSSIM: {:.6f}'.format( |
|
i + 1, base_name, PSNR, SSIM)) |
|
PSNR_all.append(PSNR) |
|
SSIM_all.append(SSIM) |
|
print('Average: PSNR: {:.6f} dB, SSIM: {:.6f}'.format( |
|
sum(PSNR_all) / len(PSNR_all), |
|
sum(SSIM_all) / len(SSIM_all))) |
|
|
|
|
|
def calculate_psnr(img1, img2): |
|
|
|
img1 = img1.astype(np.float64) |
|
img2 = img2.astype(np.float64) |
|
mse = np.mean((img1 - img2)**2) |
|
if mse == 0: |
|
return float('inf') |
|
return 20 * math.log10(255.0 / math.sqrt(mse)) |
|
|
|
|
|
def ssim(img1, img2): |
|
C1 = (0.01 * 255)**2 |
|
C2 = (0.03 * 255)**2 |
|
|
|
img1 = img1.astype(np.float64) |
|
img2 = img2.astype(np.float64) |
|
kernel = cv2.getGaussianKernel(11, 1.5) |
|
window = np.outer(kernel, kernel.transpose()) |
|
|
|
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] |
|
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] |
|
mu1_sq = mu1**2 |
|
mu2_sq = mu2**2 |
|
mu1_mu2 = mu1 * mu2 |
|
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq |
|
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq |
|
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 |
|
|
|
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * |
|
(sigma1_sq + sigma2_sq + C2)) |
|
return ssim_map.mean() |
|
|
|
|
|
def calculate_ssim(img1, img2): |
|
'''calculate SSIM |
|
the same outputs as MATLAB's |
|
img1, img2: [0, 255] |
|
''' |
|
if not img1.shape == img2.shape: |
|
raise ValueError('Input images must have the same dimensions.') |
|
if img1.ndim == 2: |
|
return ssim(img1, img2) |
|
elif img1.ndim == 3: |
|
if img1.shape[2] == 3: |
|
ssims = [] |
|
for i in range(3): |
|
ssims.append(ssim(img1, img2)) |
|
return np.array(ssims).mean() |
|
elif img1.shape[2] == 1: |
|
return ssim(np.squeeze(img1), np.squeeze(img2)) |
|
else: |
|
raise ValueError('Wrong input image dimensions.') |
|
|
|
|
|
def bgr2ycbcr(img, only_y=True): |
|
'''same as matlab rgb2ycbcr |
|
only_y: only return Y channel |
|
Input: |
|
uint8, [0, 255] |
|
float, [0, 1] |
|
''' |
|
in_img_type = img.dtype |
|
img.astype(np.float32) |
|
if in_img_type != np.uint8: |
|
img *= 255. |
|
|
|
if only_y: |
|
rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0 |
|
else: |
|
rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], |
|
[65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128] |
|
if in_img_type == np.uint8: |
|
rlt = rlt.round() |
|
else: |
|
rlt /= 255. |
|
return rlt.astype(in_img_type) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|