Spaces:
Running
Running
File size: 7,443 Bytes
1ee396e abc6868 1ee396e 4784f3b 1ee396e 4784f3b 1ee396e abc6868 1ee396e abc6868 1f2982b 1ee396e 1f2982b a4274f6 1f2982b a4274f6 1f2982b a4274f6 1f2982b 8d5fa5e a4274f6 1f2982b 8d5fa5e 31e0f17 1f2982b 31e0f17 1f2982b 1ee396e 1f2982b a4274f6 1ee396e 08efe9a 1ee396e a4274f6 1ee396e 289d427 d2137e3 1fd6ee7 289d427 1ee396e 614dfc7 9b52dc7 614dfc7 9b52dc7 6acad0f 9b52dc7 1ee396e 31e0f17 1ee396e 31e0f17 1ee396e abc6868 31e0f17 abc6868 31e0f17 abc6868 31e0f17 7da3ef8 1ee396e 08efe9a 31e0f17 08efe9a 31e0f17 1ee396e 7da3ef8 1ee396e 31e0f17 1ee396e d2137e3 31e0f17 d2137e3 31e0f17 6acad0f 31e0f17 d2137e3 31e0f17 d2137e3 31e0f17 1ee396e abc6868 1ee396e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import os
# Redirect cache to a writable path inside container
os.environ["XDG_CACHE_HOME"] = "/tmp/.cache"
import gradio as gr
from impresso_pipelines.ocrqa import OCRQAPipeline
pipeline = OCRQAPipeline()
LANGUAGES = ["en", "de", "fr"]
# Example OCR text (German text with typical OCR errors)
EXAMPLE_TEXT = """Vieles Seltsame geschieht auf Erden :
Nichts Seltsameres sieht der Mond
Als das Glück, das im Knopfloch wohnt.
Zaubrisch faßt es den ernsten Mann.
Ohne nach Weib u. Kinjd zu fragen
Reitet er aus, nach dem Glück zu jagen,
Nur nacb ihm war stets sein Vegehr.
Aber neben ihm 1reitet der Dämon her
Des Ehrgeizes mit finsterer Tücke,
Und so jagt er zuletzt auf die Brücke,
Die über dem Abgrund, d:m nächtlich schwarzen
Jählings abbricht."""
def process_ocr_qa(text, lang_choice):
try:
lang = None if lang_choice == "Auto-detect" else lang_choice
result = pipeline(text, language=lang, diagnostics=True)
# Format the output for better readability
if isinstance(result, dict):
output_lines = []
# Language detection
if 'language' in result:
output_lines.append(f"🌍 Language: {result['language']}")
# Quality score
if 'score' in result:
score = result['score']
score_emoji = "🟢" if score >= 0.8 else "🟡" if score >= 0.5 else "🔴"
output_lines.append(f"{score_emoji} Quality Score: {score:.1f}")
# Diagnostics section
if 'diagnostics' in result and result['diagnostics']:
diagnostics = result['diagnostics']
# Model information
if 'model_id' in diagnostics:
output_lines.append(f"🤖 Model: {diagnostics['model_id']}")
# Known tokens
if 'known_tokens' in diagnostics and diagnostics['known_tokens']:
known_tokens = diagnostics['known_tokens']
output_lines.append(f"✅ Known tokens ({len(known_tokens)}): {', '.join(known_tokens)}")
# Unknown tokens (potential OCR errors)
if 'unknown_tokens' in diagnostics and diagnostics['unknown_tokens']:
unknown_tokens = diagnostics['unknown_tokens']
output_lines.append(f"❌ Unrecognized tokens ({len(unknown_tokens)}): {', '.join(unknown_tokens)}")
elif 'unknown_tokens' in diagnostics:
output_lines.append("✨ All tokens matched known lexicons – no OCR errors detected.")
# Other fields
for key, value in result.items():
if key not in ['language', 'score', 'diagnostics']:
output_lines.append(f"🔍 {key.replace('_', ' ').title()}: {value}")
return "\n\n".join(output_lines)
else:
return f"✨ Processed Result:\n{result}"
except Exception as e:
print("❌ Pipeline error:", e)
return f"Error: {e}"
# Create the interface with logo and improved description
with gr.Blocks(title="OCR QA Demo") as demo:
gr.HTML(
"""
<a href="https://impresso-project.ch" target="_blank">
<img src="https://huggingface.co/spaces/impresso-project/ocrqa-demo/resolve/main/logo.jpeg"
alt="Impresso Project Logo"
style="height: 42px; display: block; margin: 5px auto; background-color: white;">
</a>
"""
)
gr.Markdown(
"""
# 🔍 Optical Character Recognition (OCR) Quality Assessment Demo
The demo showcases how the [Impresso Project](https://impresso-project.ch) assesses the quality of ORC transcripts by estimating the proportion of (un)known words with respect to a large clean text corpus.
It returns:
- a **quality score** between **0.0 (poor)** and **1.0 (excellent)**, and
- a list of **potential OCR errors** (unrecognized tokens) as well as the known tokens.
You can try the example below (a German text containing typical OCR errors), or paste your own OCR-processed text to assess its quality.
"""
)
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="OCR Text (from digitized sources)",
value=EXAMPLE_TEXT,
lines=8,
placeholder="Paste OCR-processed text from a historical document..."
)
lang_dropdown = gr.Dropdown(
choices=LANGUAGES,
value="de",
label="Language of the Text"
)
submit_btn = gr.Button("🔍 Assess OCR Text Quality", variant="primary")
info_btn = gr.Button("Help", size="md", scale=1)
with gr.Column():
with gr.Row():
output = gr.Textbox(
label="OCR Quality Report",
lines=15,
placeholder="The quality assessment will appear here...",
scale=10
)
# Info modal/accordion for pipeline details
with gr.Accordion("📝 About the OCR QA Method", open=False, visible=False) as info_accordion:
gr.Markdown(
"""
This pipeline estimates OCR quality by analyzing the proportion of **unique words** in a text that match curated wordlists for a given language.
#### How it works:
- **Scoring**: The quality score ranges from **0.0** (poor) to **1.0** (excellent) and is based on the ratio of recognized to unrecognized unique word forms.
- **Lexical resources**: Words are matched against precompiled lists derived from **Wikipedia** and **Wortschatz Leipzig**, using **Bloom filters** for fast, memory-efficient lookup.
- **Multilingual support**: Available for several languages (e.g., German, French, English). If not specified, the language is detected automatically.
- **Diagnostics output**:
- ✅ **Known tokens**: Words found in the reference wordlist, presumed correctly OCR’d.
- ❌ **Unrecognized tokens**: Words not found in the list—often OCR errors, rare forms, or out-of-vocabulary items (e.g., names, historical terms).
- Note: Non-alphabetic characters will be removed. For efficiency reasons, all digits are replace by the digit 0.
#### ⚠️ Limitations:
- The wordlists are **not exhaustive**, particularly for **historical vocabulary**, **dialects**, or **named entities**.
- The method may fail to flag **short OCR artifacts** (e.g., 1–2 character noise) and **non-alphabetic symbols**.
As such, the score should be understood as a **heuristic indicator**, best used for:
- Comparative assessments between OCR outputs
- Filtering low-quality text from large corpora
- Supporting decisions in corpus preparation and annotation workflows
It is **not a substitute for manual inspection** or ground-truth evaluation.
"""
)
submit_btn.click(
fn=process_ocr_qa,
inputs=[text_input, lang_dropdown],
outputs=output
)
# Toggle info visibility when info button is clicked
info_btn.click(
fn=lambda: gr.Accordion(visible=True, open=True),
outputs=info_accordion
)
demo.launch(server_name="0.0.0.0", server_port=7860) |