import gradio as gr import os import cv2 import numpy as np import torch import spaces from ultralytics import YOLO from tqdm import tqdm from PIL import Image # Prevent config warnings os.environ["YOLO_CONFIG_DIR"] = "/tmp" device = "cuda" if torch.cuda.is_available() else "cpu" # Load detection models extract_model = YOLO("best.pt").to(device) detect_model = YOLO("yolov8n.pt").to(device) @spaces.GPU def process_video(video_path): os.makedirs("frames", exist_ok=True) cap = cv2.VideoCapture(video_path) frames, idx = [], 0 while cap.isOpened(): ret, frame = cap.read() if not ret: break results = extract_model(frame) labels = [extract_model.names[int(c)] for c in results[0].boxes.cls.cpu().numpy()] if "board" in labels and "person" not in labels: frames.append(frame) cv2.imwrite(f"frames/frame_{idx:04d}.jpg", frame) idx += 1 cap.release() if not frames: raise RuntimeError("No frames with only 'board' and no 'person' found.") base = frames[0] aligned = [base] def align(ref, tgt): orb = cv2.ORB_create(500) k1,d1 = orb.detectAndCompute(ref,None) k2,d2 = orb.detectAndCompute(tgt,None) if d1 is None or d2 is None: return None m = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True).match(d1,d2) if len(m)<10: return None src = np.float32([k2[m.trainIdx].pt for m in m]).reshape(-1,1,2) dst = np.float32([k1[m.queryIdx].pt for m in m]).reshape(-1,1,2) H,_ = cv2.findHomography(src,dst,cv2.RANSAC) return None if H is None else cv2.warpPerspective(tgt,H,(ref.shape[1],ref.shape[0])) from tqdm import tqdm for f in tqdm(frames[1:], desc="Aligning"): a = align(base, f) if a is not None: aligned.append(a) stack = np.stack(aligned,axis=0).astype(np.float32) median_board = np.median(stack,axis=0).astype(np.uint8) cv2.imwrite("clean_board.jpg", median_board) sum_img = np.zeros_like(aligned[0],dtype=np.float32) count = np.zeros(aligned[0].shape[:2],dtype=np.float32) for f in tqdm(aligned, desc="Masking persons"): res = detect_model(f, verbose=False) m = np.zeros(f.shape[:2],dtype=np.uint8) for box in res[0].boxes: if detect_model.names[int(box.cls)]=="person": x1,y1,x2,y2 = map(int,box.xyxy[0]) cv2.rectangle(m,(x1,y1),(x2,y2),255,-1) inv = cv2.bitwise_not(m) masked = cv2.bitwise_and(f,f,mask=inv) sum_img += masked.astype(np.float32) count += (inv>0).astype(np.float32) count[count==0] = 1 selective = (sum_img/count[:,:,None]).astype(np.uint8) blur = cv2.GaussianBlur(selective,(3,3),0) sharp = cv2.addWeighted(selective,2.0,blur,-1.0,0) out_img = "sharpened_board_color.jpg" cv2.imwrite(out_img, sharp) demo = gr.Interface( fn=process_video, inputs=[gr.File(label="Upload Classroom Video (.mp4)", file_types=['.mp4'], file_count="single", type="filepath")], outputs=[gr.Image(label="Sharpened Final Board")], title="Obstruction remover", description="Remove the obstructions while retaining the exact text on the board!" ) if __name__=="__main__": print(f"[INFO] {'GPU' if device=='cuda' else 'CPU'} mode") demo.launch()