Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- app.py +123 -4
- best.pt +3 -0
- requirements.txt +10 -0
- runtime.txt +1 -0
- yolov8n.pt +3 -0
app.py
CHANGED
@@ -1,7 +1,126 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import spaces
|
7 |
+
from ultralytics import YOLO
|
8 |
+
from tqdm import tqdm
|
9 |
|
10 |
+
# Fix for Ultralytics config write error in Hugging Face environment
|
11 |
+
os.environ["YOLO_CONFIG_DIR"] = "/tmp"
|
12 |
|
13 |
+
# Use GPU if available
|
14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
|
16 |
+
# Load models onto the appropriate device
|
17 |
+
extract_model = YOLO("best.pt").to(device)
|
18 |
+
detect_model = YOLO("yolov8n.pt").to(device)
|
19 |
+
|
20 |
+
@spaces.GPU
|
21 |
+
def process_video(video_path):
|
22 |
+
os.makedirs("frames", exist_ok=True)
|
23 |
+
|
24 |
+
# Step 1: Extract board-only frames
|
25 |
+
cap = cv2.VideoCapture(video_path)
|
26 |
+
frames, idx = [], 0
|
27 |
+
while cap.isOpened():
|
28 |
+
ret, frame = cap.read()
|
29 |
+
if not ret:
|
30 |
+
break
|
31 |
+
results = extract_model(frame)
|
32 |
+
labels = [extract_model.names[int(c)] for c in results[0].boxes.cls.cpu().numpy()]
|
33 |
+
if "board" in labels and "person" not in labels:
|
34 |
+
frames.append(frame)
|
35 |
+
cv2.imwrite(f"frames/frame_{idx:04d}.jpg", frame)
|
36 |
+
idx += 1
|
37 |
+
cap.release()
|
38 |
+
if not frames:
|
39 |
+
raise RuntimeError("No frames with only 'board' and no 'person' found.")
|
40 |
+
|
41 |
+
# Step 2: Align
|
42 |
+
def align_frames(ref, tgt):
|
43 |
+
orb = cv2.ORB_create(500)
|
44 |
+
k1, d1 = orb.detectAndCompute(ref, None)
|
45 |
+
k2, d2 = orb.detectAndCompute(tgt, None)
|
46 |
+
if d1 is None or d2 is None:
|
47 |
+
return None
|
48 |
+
matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
|
49 |
+
matches = matcher.match(d1, d2)
|
50 |
+
if len(matches) < 10:
|
51 |
+
return None
|
52 |
+
src = np.float32([k2[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2)
|
53 |
+
dst = np.float32([k1[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2)
|
54 |
+
H, _ = cv2.findHomography(src, dst, cv2.RANSAC)
|
55 |
+
return None if H is None else cv2.warpPerspective(tgt, H, (ref.shape[1], ref.shape[0]))
|
56 |
+
|
57 |
+
base = frames[0]
|
58 |
+
aligned = [base]
|
59 |
+
for f in tqdm(frames[1:], desc="Aligning"):
|
60 |
+
a = align_frames(base, f)
|
61 |
+
if a is not None:
|
62 |
+
aligned.append(a)
|
63 |
+
if not aligned:
|
64 |
+
raise RuntimeError("Alignment failed for all frames.")
|
65 |
+
|
66 |
+
# Step 3: Median-fuse
|
67 |
+
stack = np.stack(aligned, axis=0).astype(np.float32)
|
68 |
+
median_board = np.median(stack, axis=0).astype(np.uint8)
|
69 |
+
cv2.imwrite("clean_board.jpg", median_board)
|
70 |
+
|
71 |
+
# Step 4: Mask persons & selective fuse
|
72 |
+
sum_img = np.zeros_like(aligned[0], dtype=np.float32)
|
73 |
+
count = np.zeros(aligned[0].shape[:2], dtype=np.float32)
|
74 |
+
for f in tqdm(aligned, desc="Masking persons"):
|
75 |
+
res = detect_model(f, verbose=False)
|
76 |
+
m = np.zeros(f.shape[:2], dtype=np.uint8)
|
77 |
+
for box in res[0].boxes:
|
78 |
+
if detect_model.names[int(box.cls)] == "person":
|
79 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
80 |
+
cv2.rectangle(m, (x1, y1), (x2, y2), 255, -1)
|
81 |
+
inv = cv2.bitwise_not(m)
|
82 |
+
masked = cv2.bitwise_and(f, f, mask=inv)
|
83 |
+
sum_img += masked.astype(np.float32)
|
84 |
+
count += (inv > 0).astype(np.float32)
|
85 |
+
|
86 |
+
count[count == 0] = 1
|
87 |
+
selective = (sum_img / count[:, :, None]).astype(np.uint8)
|
88 |
+
cv2.imwrite("fused_board_selective.jpg", selective)
|
89 |
+
|
90 |
+
# Step 5: Sharpen
|
91 |
+
blur = cv2.GaussianBlur(selective, (5, 5), 0)
|
92 |
+
sharp = cv2.addWeighted(selective, 1.5, blur, -0.5, 0)
|
93 |
+
cv2.imwrite("sharpened_board_color.jpg", sharp)
|
94 |
+
|
95 |
+
return "clean_board.jpg", "fused_board_selective.jpg", "sharpened_board_color.jpg"
|
96 |
+
|
97 |
+
|
98 |
+
demo = gr.Interface(
|
99 |
+
fn=process_video,
|
100 |
+
inputs=[
|
101 |
+
gr.File(
|
102 |
+
label="Upload Classroom Video (.mp4)",
|
103 |
+
file_types=['.mp4'],
|
104 |
+
file_count="single",
|
105 |
+
type="filepath"
|
106 |
+
)
|
107 |
+
],
|
108 |
+
outputs=[
|
109 |
+
gr.Image(label="Median-Fused Clean Board"),
|
110 |
+
gr.Image(label="Selective Fusion (No Persons)"),
|
111 |
+
gr.Image(label="Sharpened Final Board")
|
112 |
+
],
|
113 |
+
title="📹 Classroom Board Cleaner",
|
114 |
+
description=(
|
115 |
+
"1️⃣ Upload your classroom video (.mp4)\n"
|
116 |
+
"2️⃣ Automatic extraction, alignment, masking, fusion & sharpening\n"
|
117 |
+
"3️⃣ View three stages of the cleaned board output"
|
118 |
+
)
|
119 |
+
)
|
120 |
+
|
121 |
+
if __name__ == "__main__":
|
122 |
+
if device == "cuda":
|
123 |
+
print(f"[INFO] ✅ Using GPU: {torch.cuda.get_device_name(0)}")
|
124 |
+
else:
|
125 |
+
print("[INFO] ⚠️ Using CPU (GPU not available or not assigned)")
|
126 |
+
demo.launch()
|
best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6550797c45403b12a25ba9a88bb1f8ef075ef235f884257ee28a4c5b7aa758c0
|
3 |
+
size 6249123
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
ultralytics
|
3 |
+
opencv-python-headless
|
4 |
+
numpy
|
5 |
+
Pillow
|
6 |
+
tqdm
|
7 |
+
opencv-python
|
8 |
+
scikit-image
|
9 |
+
matplotlib
|
10 |
+
spaces
|
runtime.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
accelerator: gpu
|
yolov8n.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f59b3d833e2ff32e194b5bb8e08d211dc7c5bdf144b90d2c8412c47ccfc83b36
|
3 |
+
size 6549796
|