import gradio as gr import torch from transformers import TrOCRProcessor, VisionEncoderDecoderModel from PIL import Image import numpy as np import cv2 from paddleocr import TextDetection from spaces import GPU # ✅ Required for ZeroGPU MODEL_HUB_ID = "imperiusrex/Handwritten_model" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("🔄 Loading models...") processor = TrOCRProcessor.from_pretrained(MODEL_HUB_ID) model = VisionEncoderDecoderModel.from_pretrained(MODEL_HUB_ID) model.to(device) model.eval() ocr_det_model = TextDetection(model_name="PP-OCRv5_server_det") print("✅ Models loaded successfully.") @GPU # ✅ This tells Hugging Face this function needs the GPU (H200) def recognize_handwritten_text(image_input): if image_input is None: return "Please upload an image." image_pil = Image.fromarray(image_input).convert("RGB") detection_results = ocr_det_model.predict(image_input, batch_size=1) detected_polys = [] for res in detection_results: polys = res.get('dt_polys', []) if polys is not None: detected_polys.extend(polys.tolist()) cropped_images = [] if detected_polys: img_np = np.array(image_pil) for box in detected_polys: box = np.array(box, dtype=np.float32) width = int(max(np.linalg.norm(box[0] - box[1]), np.linalg.norm(box[2] - box[3]))) height = int(max(np.linalg.norm(box[0] - box[3]), np.linalg.norm(box[1] - box[2]))) dst_rect = np.array([ [0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1] ], dtype=np.float32) M = cv2.getPerspectiveTransform(box, dst_rect) warped = cv2.warpPerspective(img_np, M, (width, height)) cropped_images.append(Image.fromarray(warped).convert("RGB")) cropped_images.reverse() recognized_texts = [] if cropped_images: for crop_img in cropped_images: pixel_values = processor(images=crop_img, return_tensors="pt").pixel_values.to(device) with torch.no_grad(): generated_ids = model.generate(pixel_values, max_new_tokens=64) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] recognized_texts.append(generated_text) else: pixel_values = processor(images=image_pil, return_tensors="pt").pixel_values.to(device) with torch.no_grad(): generated_ids = model.generate(pixel_values, max_new_tokens=64) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] recognized_texts.append("No text boxes detected. Full image OCR:\n" + generated_text) return "\n".join(recognized_texts) # --- Gradio Interface --- def build_interface(): return gr.Interface( fn=recognize_handwritten_text, inputs=gr.Image(type="numpy", label="Upload Handwritten Image"), outputs="text", title="✍️ Handwritten Text Recognition", description="📷 Upload a handwritten image. Uses PaddleOCR (detection) + TrOCR (recognition).", ) if __name__ == "__main__": iface = build_interface() iface.launch()