Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,22 +5,19 @@ import numpy as np
|
|
5 |
from ultralytics import YOLO
|
6 |
from tqdm import tqdm
|
7 |
|
8 |
-
# Pre
|
9 |
extract_model = YOLO("best.pt")
|
10 |
detect_model = YOLO("yolov8n.pt")
|
11 |
|
12 |
def process_video(video_path):
|
13 |
-
# Prepare output folder
|
14 |
os.makedirs("frames", exist_ok=True)
|
15 |
|
16 |
-
#
|
17 |
cap = cv2.VideoCapture(video_path)
|
18 |
-
frames = []
|
19 |
-
idx = 0
|
20 |
while cap.isOpened():
|
21 |
ret, frame = cap.read()
|
22 |
-
if not ret:
|
23 |
-
break
|
24 |
results = extract_model(frame)
|
25 |
labels = [extract_model.names[int(c)] for c in results[0].boxes.cls.cpu().numpy()]
|
26 |
if "board" in labels and "person" not in labels:
|
@@ -29,42 +26,37 @@ def process_video(video_path):
|
|
29 |
idx += 1
|
30 |
cap.release()
|
31 |
if not frames:
|
32 |
-
raise RuntimeError("No frames
|
33 |
|
34 |
-
#
|
35 |
def align_frames(ref, tgt):
|
36 |
orb = cv2.ORB_create(500)
|
37 |
k1, d1 = orb.detectAndCompute(ref, None)
|
38 |
k2, d2 = orb.detectAndCompute(tgt, None)
|
39 |
-
if d1 is None or d2 is None:
|
40 |
-
return None
|
41 |
matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
|
42 |
matches = matcher.match(d1, d2)
|
43 |
-
if len(matches) < 10:
|
44 |
-
return None
|
45 |
src = np.float32([k2[m.trainIdx].pt for m in matches]).reshape(-1,1,2)
|
46 |
dst = np.float32([k1[m.queryIdx].pt for m in matches]).reshape(-1,1,2)
|
47 |
H, _ = cv2.findHomography(src, dst, cv2.RANSAC)
|
48 |
-
if H is None
|
49 |
-
return None
|
50 |
-
return cv2.warpPerspective(tgt, H, (ref.shape[1], ref.shape[0]))
|
51 |
|
52 |
-
base = frames[0]
|
53 |
-
aligned = [base]
|
54 |
for f in tqdm(frames[1:], desc="Aligning"):
|
55 |
a = align_frames(base, f)
|
56 |
-
if a is not None:
|
57 |
-
aligned.append(a)
|
58 |
if not aligned:
|
59 |
-
raise RuntimeError("
|
60 |
|
61 |
-
#
|
62 |
stack = np.stack(aligned, axis=0).astype(np.float32)
|
63 |
median_board = np.median(stack, axis=0).astype(np.uint8)
|
64 |
cv2.imwrite("clean_board.jpg", median_board)
|
65 |
|
66 |
-
#
|
67 |
-
masks = []
|
|
|
68 |
for f in tqdm(aligned, desc="Masking persons"):
|
69 |
res = detect_model(f, verbose=False)
|
70 |
m = np.zeros(f.shape[:2], dtype=np.uint8)
|
@@ -72,43 +64,41 @@ def process_video(video_path):
|
|
72 |
if detect_model.names[int(box.cls)] == "person":
|
73 |
x1,y1,x2,y2 = map(int, box.xyxy[0])
|
74 |
cv2.rectangle(m, (x1,y1), (x2,y2), 255, -1)
|
75 |
-
|
76 |
-
|
77 |
-
sum_img = np.zeros_like(aligned[0], dtype=np.float32)
|
78 |
-
count = np.zeros(aligned[0].shape[:2], dtype=np.float32)
|
79 |
-
for f, m in zip(aligned, masks):
|
80 |
-
inv = cv2.bitwise_not(m)
|
81 |
masked = cv2.bitwise_and(f, f, mask=inv)
|
82 |
sum_img += masked.astype(np.float32)
|
83 |
-
count
|
84 |
|
85 |
count[count==0] = 1
|
86 |
selective = (sum_img / count[:,:,None]).astype(np.uint8)
|
87 |
cv2.imwrite("fused_board_selective.jpg", selective)
|
88 |
|
89 |
-
#
|
90 |
blur = cv2.GaussianBlur(selective, (5,5), 0)
|
91 |
sharp = cv2.addWeighted(selective, 1.5, blur, -0.5, 0)
|
92 |
cv2.imwrite("sharpened_board_color.jpg", sharp)
|
93 |
|
94 |
return "clean_board.jpg", "fused_board_selective.jpg", "sharpened_board_color.jpg"
|
95 |
|
|
|
96 |
demo = gr.Interface(
|
97 |
fn=process_video,
|
98 |
inputs=[
|
99 |
-
gr.
|
100 |
label="Upload Classroom Video (.mp4)",
|
|
|
|
|
101 |
type="filepath"
|
102 |
)
|
103 |
],
|
104 |
outputs=[
|
105 |
gr.Image(label="Median-Fused Clean Board"),
|
106 |
-
gr.Image(label="Selective Fusion (No Persons)"),
|
107 |
gr.Image(label="Sharpened Final Board")
|
108 |
],
|
109 |
title="📹 Classroom Board Cleaner",
|
110 |
description=(
|
111 |
-
"1️⃣ Upload your classroom video (
|
112 |
"2️⃣ Automatic extraction, alignment, masking, fusion & sharpening\n"
|
113 |
"3️⃣ View three stages of the cleaned board output"
|
114 |
)
|
|
|
5 |
from ultralytics import YOLO
|
6 |
from tqdm import tqdm
|
7 |
|
8 |
+
# Pre‐load models from your repo root
|
9 |
extract_model = YOLO("best.pt")
|
10 |
detect_model = YOLO("yolov8n.pt")
|
11 |
|
12 |
def process_video(video_path):
|
|
|
13 |
os.makedirs("frames", exist_ok=True)
|
14 |
|
15 |
+
# Step 1: Extract board‐only frames
|
16 |
cap = cv2.VideoCapture(video_path)
|
17 |
+
frames, idx = [], 0
|
|
|
18 |
while cap.isOpened():
|
19 |
ret, frame = cap.read()
|
20 |
+
if not ret: break
|
|
|
21 |
results = extract_model(frame)
|
22 |
labels = [extract_model.names[int(c)] for c in results[0].boxes.cls.cpu().numpy()]
|
23 |
if "board" in labels and "person" not in labels:
|
|
|
26 |
idx += 1
|
27 |
cap.release()
|
28 |
if not frames:
|
29 |
+
raise RuntimeError("No frames with only 'board' and no 'person' found.")
|
30 |
|
31 |
+
# Step 2: Align
|
32 |
def align_frames(ref, tgt):
|
33 |
orb = cv2.ORB_create(500)
|
34 |
k1, d1 = orb.detectAndCompute(ref, None)
|
35 |
k2, d2 = orb.detectAndCompute(tgt, None)
|
36 |
+
if d1 is None or d2 is None: return None
|
|
|
37 |
matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
|
38 |
matches = matcher.match(d1, d2)
|
39 |
+
if len(matches) < 10: return None
|
|
|
40 |
src = np.float32([k2[m.trainIdx].pt for m in matches]).reshape(-1,1,2)
|
41 |
dst = np.float32([k1[m.queryIdx].pt for m in matches]).reshape(-1,1,2)
|
42 |
H, _ = cv2.findHomography(src, dst, cv2.RANSAC)
|
43 |
+
return None if H is None else cv2.warpPerspective(tgt, H, (ref.shape[1], ref.shape[0]))
|
|
|
|
|
44 |
|
45 |
+
base = frames[0]; aligned = [base]
|
|
|
46 |
for f in tqdm(frames[1:], desc="Aligning"):
|
47 |
a = align_frames(base, f)
|
48 |
+
if a is not None: aligned.append(a)
|
|
|
49 |
if not aligned:
|
50 |
+
raise RuntimeError("Alignment failed for all frames.")
|
51 |
|
52 |
+
# Step 3: Median‐fuse
|
53 |
stack = np.stack(aligned, axis=0).astype(np.float32)
|
54 |
median_board = np.median(stack, axis=0).astype(np.uint8)
|
55 |
cv2.imwrite("clean_board.jpg", median_board)
|
56 |
|
57 |
+
# Step 4: Mask persons & selective fuse
|
58 |
+
masks, sum_img = [], np.zeros_like(aligned[0], dtype=np.float32)
|
59 |
+
count = np.zeros(aligned[0].shape[:2], dtype=np.float32)
|
60 |
for f in tqdm(aligned, desc="Masking persons"):
|
61 |
res = detect_model(f, verbose=False)
|
62 |
m = np.zeros(f.shape[:2], dtype=np.uint8)
|
|
|
64 |
if detect_model.names[int(box.cls)] == "person":
|
65 |
x1,y1,x2,y2 = map(int, box.xyxy[0])
|
66 |
cv2.rectangle(m, (x1,y1), (x2,y2), 255, -1)
|
67 |
+
inv = cv2.bitwise_not(m)
|
|
|
|
|
|
|
|
|
|
|
68 |
masked = cv2.bitwise_and(f, f, mask=inv)
|
69 |
sum_img += masked.astype(np.float32)
|
70 |
+
count += (inv>0).astype(np.float32)
|
71 |
|
72 |
count[count==0] = 1
|
73 |
selective = (sum_img / count[:,:,None]).astype(np.uint8)
|
74 |
cv2.imwrite("fused_board_selective.jpg", selective)
|
75 |
|
76 |
+
# Step 5: Sharpen
|
77 |
blur = cv2.GaussianBlur(selective, (5,5), 0)
|
78 |
sharp = cv2.addWeighted(selective, 1.5, blur, -0.5, 0)
|
79 |
cv2.imwrite("sharpened_board_color.jpg", sharp)
|
80 |
|
81 |
return "clean_board.jpg", "fused_board_selective.jpg", "sharpened_board_color.jpg"
|
82 |
|
83 |
+
|
84 |
demo = gr.Interface(
|
85 |
fn=process_video,
|
86 |
inputs=[
|
87 |
+
gr.File(
|
88 |
label="Upload Classroom Video (.mp4)",
|
89 |
+
file_types=['.mp4'],
|
90 |
+
file_count="single",
|
91 |
type="filepath"
|
92 |
)
|
93 |
],
|
94 |
outputs=[
|
95 |
gr.Image(label="Median-Fused Clean Board"),
|
96 |
+
gr.Image(label="Selective Fusion (No Persons)"),
|
97 |
gr.Image(label="Sharpened Final Board")
|
98 |
],
|
99 |
title="📹 Classroom Board Cleaner",
|
100 |
description=(
|
101 |
+
"1️⃣ Upload your classroom video (.mp4)\n"
|
102 |
"2️⃣ Automatic extraction, alignment, masking, fusion & sharpening\n"
|
103 |
"3️⃣ View three stages of the cleaned board output"
|
104 |
)
|