Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,16 +6,8 @@ import torch
|
|
6 |
import spaces
|
7 |
from ultralytics import YOLO
|
8 |
from tqdm import tqdm
|
9 |
-
|
10 |
-
import
|
11 |
-
import time
|
12 |
-
from transformers import MobileViTFeatureExtractor, MobileViTForImageClassification
|
13 |
-
from sentence_transformers import util
|
14 |
-
import gc
|
15 |
-
|
16 |
-
# Set up logging
|
17 |
-
logging.basicConfig(level=logging.INFO)
|
18 |
-
logger = logging.getLogger(__name__)
|
19 |
|
20 |
# Fix for Ultralytics config write error in Hugging Face environment
|
21 |
os.environ["YOLO_CONFIG_DIR"] = "/tmp"
|
@@ -23,37 +15,19 @@ os.environ["YOLO_CONFIG_DIR"] = "/tmp"
|
|
23 |
# Use GPU if available
|
24 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
},
|
36 |
-
{
|
37 |
-
"prompt": "A chemistry formula on a whiteboard",
|
38 |
-
"explanation": "The board displays a chemistry formula, such as a chemical equation or molecular structure, used to describe reactions or compounds."
|
39 |
-
},
|
40 |
-
{
|
41 |
-
"prompt": "A biology diagram on a whiteboard",
|
42 |
-
"explanation": "The board shows a biology diagram, such as a cell structure or photosynthesis process, illustrating biological concepts."
|
43 |
-
}
|
44 |
-
]
|
45 |
|
46 |
@spaces.GPU
|
47 |
def process_video(video_path):
|
48 |
-
|
49 |
-
try:
|
50 |
-
extract_model = YOLO("best.pt").to(device)
|
51 |
-
detect_model = YOLO("yolov8n.pt").to(device)
|
52 |
-
except Exception as e:
|
53 |
-
logger.error(f"Failed to load YOLO models: {str(e)}")
|
54 |
-
raise RuntimeError(f"Failed to load YOLO models: {str(e)}")
|
55 |
-
|
56 |
-
os.makedirs("frames", exist_ok=True)
|
57 |
|
58 |
# Step 1: Extract board-only frames
|
59 |
cap = cv2.VideoCapture(video_path)
|
@@ -66,7 +40,7 @@ def process_video(video_path):
|
|
66 |
labels = [extract_model.names[int(c)] for c in results[0].boxes.cls.cpu().numpy()]
|
67 |
if "board" in labels and "person" not in labels:
|
68 |
frames.append(frame)
|
69 |
-
cv2.imwrite(f"frames/frame_{idx:04d}.jpg", frame)
|
70 |
idx += 1
|
71 |
cap.release()
|
72 |
if not frames:
|
@@ -100,7 +74,7 @@ def process_video(video_path):
|
|
100 |
# Step 3: Median-fuse
|
101 |
stack = np.stack(aligned, axis=0).astype(np.float32)
|
102 |
median_board = np.median(stack, axis=0).astype(np.uint8)
|
103 |
-
cv2.imwrite("clean_board.jpg", median_board)
|
104 |
|
105 |
# Step 4: Mask persons & selective fuse
|
106 |
sum_img = np.zeros_like(aligned[0], dtype=np.float32)
|
@@ -119,132 +93,33 @@ def process_video(video_path):
|
|
119 |
|
120 |
count[count == 0] = 1
|
121 |
selective = (sum_img / count[:, :, None]).astype(np.uint8)
|
122 |
-
cv2.imwrite("fused_board_selective.jpg", selective)
|
123 |
|
124 |
# Step 5: Sharpen
|
125 |
blur = cv2.GaussianBlur(selective, (5, 5), 0)
|
126 |
sharp = cv2.addWeighted(selective, 1.5, blur, -0.5, 0)
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
if
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
model = MobileViTForImageClassification.from_pretrained(
|
144 |
-
"apple/mobilevit-xxs",
|
145 |
-
torch_dtype=torch.bfloat16,
|
146 |
-
low_cpu_mem_usage=True
|
147 |
-
).to(device)
|
148 |
-
feature_extractor = MobileViTFeatureExtractor.from_pretrained("apple/mobilevit-xxs")
|
149 |
-
logger.info("Successfully loaded MobileViT model and feature extractor")
|
150 |
-
except Exception as e:
|
151 |
-
logger.error(f"Failed to load MobileViT model: {str(e)}")
|
152 |
-
return (
|
153 |
-
"Error: Failed to load MobileViT model due to insufficient memory. "
|
154 |
-
"Consider upgrading to a paid Space with GPU.\n\n"
|
155 |
-
"For further reading:\n"
|
156 |
-
"- Khan Academy: https://www.khanacademy.org\n"
|
157 |
-
"- Wikipedia: https://en.wikipedia.org/wiki/Education\n"
|
158 |
-
"- MIT OpenCourseWare: https://ocw.mit.edu"
|
159 |
-
)
|
160 |
-
|
161 |
-
# Convert OpenCV image to PIL
|
162 |
-
try:
|
163 |
-
image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
164 |
-
except Exception as e:
|
165 |
-
logger.error(f"Image conversion failed: {str(e)}")
|
166 |
-
return f"Error converting image: {str(e)}"
|
167 |
-
|
168 |
-
# Load sentence transformer for prompt embeddings
|
169 |
-
try:
|
170 |
-
from sentence_transformers import SentenceTransformer
|
171 |
-
text_encoder = SentenceTransformer("all-MiniLM-L6-v2")
|
172 |
-
logger.info("Successfully loaded sentence transformer")
|
173 |
-
except Exception as e:
|
174 |
-
logger.error(f"Failed to load sentence transformer: {str(e)}")
|
175 |
-
return (
|
176 |
-
"Error: Failed to load text encoder for prompts.\n\n"
|
177 |
-
"For further reading:\n"
|
178 |
-
"- Khan Academy: https://www.khanacademy.org\n"
|
179 |
-
"- Wikipedia: https://en.wikipedia.org/wiki/Education\n"
|
180 |
-
"- MIT OpenCourseWare: https://ocw.mit.edu"
|
181 |
-
)
|
182 |
-
|
183 |
-
# Process image and prompts
|
184 |
-
for attempt in range(retries):
|
185 |
-
try:
|
186 |
-
# Prepare image inputs
|
187 |
-
inputs = feature_extractor(images=image_pil, return_tensors="pt").to(device)
|
188 |
-
|
189 |
-
# Get image features
|
190 |
-
with torch.no_grad():
|
191 |
-
outputs = model(**inputs, output_hidden_states=True)
|
192 |
-
# Use the last hidden state as features (approximating CLIP-like embeddings)
|
193 |
-
image_features = outputs.hidden_states[-1].mean(dim=1) # Average pooling
|
194 |
-
|
195 |
-
# Encode prompts
|
196 |
-
prompts = [entry["prompt"] for entry in KNOWLEDGE_BASE]
|
197 |
-
text_features = text_encoder.encode(prompts, convert_to_tensor=True, device=device)
|
198 |
-
|
199 |
-
# Compute cosine similarities
|
200 |
-
similarities = util.cos_sim(image_features, text_features)[0]
|
201 |
-
best_match_idx = similarities.argmax()
|
202 |
-
best_score = similarities[best_match_idx].item()
|
203 |
-
|
204 |
-
# Threshold for confidence
|
205 |
-
if best_score < 0.2:
|
206 |
-
logger.warning("No confident match found for image content")
|
207 |
-
explanation = "The board content could not be confidently identified."
|
208 |
-
matched_prompt = "Unknown content"
|
209 |
-
else:
|
210 |
-
matched_prompt = prompts[best_match_idx]
|
211 |
-
explanation = next(entry["explanation"] for entry in KNOWLEDGE_BASE if entry["prompt"] == matched_prompt)
|
212 |
-
logger.info(f"Matched prompt: {matched_prompt} (score: {best_score:.2f})")
|
213 |
-
|
214 |
-
references = (
|
215 |
-
"For further reading:\n"
|
216 |
-
"- Khan Academy: https://www.khanacademy.org\n"
|
217 |
-
"- Wikipedia: https://en.wikipedia.org/wiki/Education\n"
|
218 |
-
"- MIT OpenCourseWare: https://ocw.mit.edu"
|
219 |
-
)
|
220 |
-
return f"Content: {matched_prompt}\n\nExplanation: {explanation}\n\n{references}"
|
221 |
-
except Exception as e:
|
222 |
-
error_msg = f"MobileViT processing attempt {attempt + 1} failed: {str(e)}"
|
223 |
-
logger.error(error_msg)
|
224 |
-
if attempt == retries - 1:
|
225 |
-
return f"Error generating content with MobileViT: {error_msg}\n\n{references}"
|
226 |
-
time.sleep(2 ** attempt)
|
227 |
-
finally:
|
228 |
-
# Free model to save memory
|
229 |
-
model = None
|
230 |
-
feature_extractor = None
|
231 |
-
gc.collect()
|
232 |
-
if device == "cuda":
|
233 |
-
torch.cuda.empty_cache()
|
234 |
|
235 |
-
|
236 |
-
try:
|
237 |
-
# Process video to get sharpened image
|
238 |
-
sharpened_image = process_video(video_path)
|
239 |
-
# Generate related content
|
240 |
-
generated_content = generate_related_content(sharpened_image)
|
241 |
-
return sharpened_image, generated_content
|
242 |
-
except Exception as e:
|
243 |
-
logger.error(f"Processing failed: {str(e)}")
|
244 |
-
return None, f"Error processing video: {str(e)}"
|
245 |
|
|
|
246 |
demo = gr.Interface(
|
247 |
-
fn=
|
248 |
inputs=[
|
249 |
gr.File(
|
250 |
label="Upload Classroom Video (.mp4)",
|
@@ -255,19 +130,18 @@ demo = gr.Interface(
|
|
255 |
],
|
256 |
outputs=[
|
257 |
gr.Image(label="Sharpened Final Board"),
|
258 |
-
gr.Textbox(label="
|
259 |
],
|
260 |
-
title="📹 Classroom Board Cleaner & Content
|
261 |
description=(
|
262 |
"Upload your classroom video (.mp4). \n"
|
263 |
-
"Automatic extraction,
|
264 |
-
"Generates a summary and detailed explanation of the board content using MobileViT-XXS."
|
265 |
)
|
266 |
)
|
267 |
|
268 |
if __name__ == "__main__":
|
269 |
if device == "cuda":
|
270 |
-
|
271 |
else:
|
272 |
-
|
273 |
demo.launch()
|
|
|
6 |
import spaces
|
7 |
from ultralytics import YOLO
|
8 |
from tqdm import tqdm
|
9 |
+
import easyocr
|
10 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Fix for Ultralytics config write error in Hugging Face environment
|
13 |
os.environ["YOLO_CONFIG_DIR"] = "/tmp"
|
|
|
15 |
# Use GPU if available
|
16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
|
18 |
+
# Load models onto the appropriate device
|
19 |
+
extract_model = YOLO("best.pt").to(device)
|
20 |
+
detect_model = YOLO("yolov8n.pt").to(device)
|
21 |
+
|
22 |
+
# Initialize EasyOCR reader (English language, GPU if available)
|
23 |
+
reader = easyocr.Reader(['en'], gpu=(device == "cuda"))
|
24 |
+
|
25 |
+
# Initialize text generation model (distilgpt2 for lightweight performance)
|
26 |
+
generator = pipeline("text-generation", model="distilgpt2", device=0 if device == "cuda" else -1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
@spaces.GPU
|
29 |
def process_video(video_path):
|
30 |
+
os.makedirs("/tmp/frames", exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
# Step 1: Extract board-only frames
|
33 |
cap = cv2.VideoCapture(video_path)
|
|
|
40 |
labels = [extract_model.names[int(c)] for c in results[0].boxes.cls.cpu().numpy()]
|
41 |
if "board" in labels and "person" not in labels:
|
42 |
frames.append(frame)
|
43 |
+
cv2.imwrite(f"/tmp/frames/frame_{idx:04d}.jpg", frame)
|
44 |
idx += 1
|
45 |
cap.release()
|
46 |
if not frames:
|
|
|
74 |
# Step 3: Median-fuse
|
75 |
stack = np.stack(aligned, axis=0).astype(np.float32)
|
76 |
median_board = np.median(stack, axis=0).astype(np.uint8)
|
77 |
+
cv2.imwrite("/tmp/clean_board.jpg", median_board)
|
78 |
|
79 |
# Step 4: Mask persons & selective fuse
|
80 |
sum_img = np.zeros_like(aligned[0], dtype=np.float32)
|
|
|
93 |
|
94 |
count[count == 0] = 1
|
95 |
selective = (sum_img / count[:, :, None]).astype(np.uint8)
|
96 |
+
cv2.imwrite("/tmp/fused_board_selective.jpg", selective)
|
97 |
|
98 |
# Step 5: Sharpen
|
99 |
blur = cv2.GaussianBlur(selective, (5, 5), 0)
|
100 |
sharp = cv2.addWeighted(selective, 1.5, blur, -0.5, 0)
|
101 |
+
output_image = "/tmp/sharpened_board_color.jpg"
|
102 |
+
cv2.imwrite(output_image, sharp)
|
103 |
+
|
104 |
+
# Step 6: Detect text using EasyOCR (not displayed)
|
105 |
+
results = reader.readtext(output_image)
|
106 |
+
detected_text = " ".join([result[1] for result in results]).strip()
|
107 |
+
if not detected_text:
|
108 |
+
return output_image, "No text detected on the board."
|
109 |
+
|
110 |
+
# Step 7: Generate explanation using distilgpt2
|
111 |
+
prompt = (
|
112 |
+
f"You are an expert teacher. The following content was detected on a classroom board: '{detected_text}'. "
|
113 |
+
"Provide a detailed explanation of the content, including definitions, examples, or step-by-step solutions if applicable. "
|
114 |
+
"If the content is an equation, solve it or explain its significance. If it's a concept, provide context and examples."
|
115 |
+
)
|
116 |
+
explanation = generator(prompt, max_length=200, num_return_sequences=1, truncation=True)[0]['generated_text']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
return output_image, explanation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
+
# Update Gradio interface
|
121 |
demo = gr.Interface(
|
122 |
+
fn=process_video,
|
123 |
inputs=[
|
124 |
gr.File(
|
125 |
label="Upload Classroom Video (.mp4)",
|
|
|
130 |
],
|
131 |
outputs=[
|
132 |
gr.Image(label="Sharpened Final Board"),
|
133 |
+
gr.Textbox(label="Explanation of Board Content")
|
134 |
],
|
135 |
+
title="📹 Classroom Board Cleaner & Content Explainer",
|
136 |
description=(
|
137 |
"Upload your classroom video (.mp4). \n"
|
138 |
+
"Automatic board extraction, sharpening, and explanation of detected content."
|
|
|
139 |
)
|
140 |
)
|
141 |
|
142 |
if __name__ == "__main__":
|
143 |
if device == "cuda":
|
144 |
+
print(f"[INFO] ✅ Using GPU: {torch.cuda.get_device_name(0)}")
|
145 |
else:
|
146 |
+
print("[INFO] ⚠️ Using CPU (GPU not available or not assigned)")
|
147 |
demo.launch()
|