Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 2,134 Bytes
			
			| 4745aa4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | from speechbrain.pretrained.interfaces import foreign_class
import gradio as gr
import os
import warnings
warnings.filterwarnings("ignore")
# Function to get the list of audio files in the 'rec/' directory
def get_audio_files_list(directory="rec"):
    try:
        return [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))]
    except FileNotFoundError:
        print("The 'rec' directory does not exist. Please make sure it is the correct path.")
        return []
# Loading the speechbrain emotion detection model
learner = foreign_class(
    source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
    pymodule_file="custom_interface.py", 
    classname="CustomEncoderWav2vec2Classifier"
)
# Building prediction function for Gradio
emotion_dict = {
    'sad': 'Sad', 
    'hap': 'Happy',
    'ang': 'Anger',
    'fea': 'Fear',
    'sur': 'Surprised',
    'neu': 'Neutral'
}
def predict_emotion(selected_audio):
    if selected_audio is None:  # Check if an audio file is selected
        return "Please select an audio file.", None
    file_path = os.path.join("rec", selected_audio)
    out_prob, score, index, text_lab = learner.classify_file(file_path)
    emotion = emotion_dict[text_lab[0]]
    return emotion, file_path  # Return both emotion and file path
# Get the list of audio files for the dropdown
audio_files_list = get_audio_files_list()
# Loading Gradio interface
dropdown = gr.Dropdown(label="Select Audio", choices=audio_files_list)
button = gr.Button("Detect emotion")
outputs = [gr.outputs.Textbox(label="Predicted Emotion"), gr.outputs.Audio(label="Play Audio")]
def button_click(selected_audio):
    return predict_emotion(selected_audio)  # Call predict_emotion when button is clicked
title = "ML Speech Emotion Detection"
description = "Speechbrain powered wav2vec 2.0 pretrained model on IEMOCAP dataset using Gradio."
# Create the Gradio interface
interface = gr.Interface(
    fn=button_click,  # Use the button_click function for the interface
    inputs=[dropdown, button],
    outputs=outputs,
    title=title,
    description=description
)
interface.launch() | 
 
			
