Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	
		Vivien Chappelier
		
	commited on
		
		
					Commit 
							
							Β·
						
						464ec84
	
1
								Parent(s):
							
							fbe5687
								
use packaged VAEs
Browse files
    	
        app.py
    CHANGED
    
    | @@ -7,7 +7,7 @@ import numpy as np | |
| 7 |  | 
| 8 | 
             
            device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
         | 
| 9 |  | 
| 10 | 
            -
            from diffusers import DiffusionPipeline
         | 
| 11 | 
             
            import torchvision.transforms as transforms
         | 
| 12 |  | 
| 13 | 
             
            from copy import deepcopy
         | 
| @@ -26,42 +26,35 @@ class BZHStableSignatureDemo(object): | |
| 26 |  | 
| 27 | 
             
                def __init__(self, *args, **kwargs):
         | 
| 28 | 
             
                    super().__init__(*args, **kwargs)
         | 
|  | |
| 29 | 
             
                    self.pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16").to("cuda")
         | 
| 30 | 
            -
             | 
| 31 | 
            -
             | 
| 32 | 
            -
                     | 
| 33 | 
            -
             | 
| 34 | 
            -
             | 
| 35 | 
            -
                     | 
| 36 | 
            -
             | 
| 37 | 
            -
                     | 
| 38 | 
            -
                    for name,  | 
| 39 | 
            -
             | 
| 40 | 
            -
             | 
| 41 | 
            -
             | 
| 42 | 
            -
                            ("extreme", "models/checkpoint_000.pth.1500000")):
         | 
| 43 | 
            -
                        sd2 = torch.load(patched_decoder_ckpt)['ldm_decoder']
         | 
| 44 | 
            -
                        msg = self.pipe.vae.load_state_dict(sd2, strict=False)
         | 
| 45 | 
            -
                        print(f"loaded LDM decoder state_dict with message\n{msg}")
         | 
| 46 | 
            -
                        print("you should check that the decoder keys are correctly matched")
         | 
| 47 | 
            -
                        decoders[name] = sd2
         | 
| 48 | 
             
                    self.decoders = decoders
         | 
| 49 |  | 
| 50 | 
             
                def generate(self, mode, seed, prompt):
         | 
| 51 | 
             
                    generator = torch.Generator(device=device)
         | 
| 52 | 
            -
                    #if seed:
         | 
| 53 | 
             
                    torch.manual_seed(seed)
         | 
| 54 |  | 
| 55 | 
            -
                    # load the patched VAE | 
| 56 | 
            -
                     | 
| 57 | 
            -
                    self.pipe.vae | 
| 58 |  | 
| 59 | 
             
                    output = self.pipe(prompt, num_inference_steps=4, guidance_scale=0.0, output_type="pil")
         | 
| 60 | 
            -
                    return output.images[0] | 
| 61 |  | 
| 62 | 
             
                def attack_detect(self, img, jpeg_compression, downscale, crop, saturation):
         | 
| 63 |  | 
| 64 | 
            -
                    #img = img_edit["composite"]
         | 
| 65 | 
             
                    img = img.convert("RGB")
         | 
| 66 |  | 
| 67 | 
             
                    # attack
         | 
| @@ -69,6 +62,7 @@ class BZHStableSignatureDemo(object): | |
| 69 | 
             
                        size = img.size
         | 
| 70 | 
             
                        size = (int(size[0] / downscale), int(size[1] / downscale))
         | 
| 71 | 
             
                        img = img.resize(size, Image.Resampling.LANCZOS)
         | 
|  | |
| 72 | 
             
                    if crop != 0:
         | 
| 73 | 
             
                        width, height = img.size
         | 
| 74 | 
             
                        area = width * height
         | 
| @@ -108,17 +102,15 @@ class BZHStableSignatureDemo(object): | |
| 108 |  | 
| 109 | 
             
                    mf.seek(0)
         | 
| 110 | 
             
                    img0 = Image.open(mf) # reload to show JPEG attack
         | 
| 111 | 
            -
             | 
| 112 | 
             
                    result = "No watermark detected."
         | 
| 113 | 
            -
                    chances = int(1 / pvalue + 1)
         | 
| 114 | 
             
                    rpv = 10**int(math.log10(pvalue))
         | 
| 115 | 
             
                    if pvalue < 1e-3:
         | 
| 116 | 
            -
                        result = "Watermark detected with low confidence (p-value<%.0e)" % rpv | 
| 117 | 
             
                    if pvalue < 1e-9:
         | 
| 118 | 
            -
                        result = "Watermark detected with high confidence (p-value<%.0e)" % rpv | 
| 119 | 
             
                    return (img0, result)
         | 
| 120 |  | 
| 121 | 
            -
             | 
| 122 | 
             
            def interface():
         | 
| 123 | 
             
                prompt = "sailing ship in storm by Rembrandt"
         | 
| 124 |  | 
|  | |
| 7 |  | 
| 8 | 
             
            device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
         | 
| 9 |  | 
| 10 | 
            +
            from diffusers import DiffusionPipeline, AutoencoderKL
         | 
| 11 | 
             
            import torchvision.transforms as transforms
         | 
| 12 |  | 
| 13 | 
             
            from copy import deepcopy
         | 
|  | |
| 26 |  | 
| 27 | 
             
                def __init__(self, *args, **kwargs):
         | 
| 28 | 
             
                    super().__init__(*args, **kwargs)
         | 
| 29 | 
            +
             | 
| 30 | 
             
                    self.pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16").to("cuda")
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                    # disable invisible-watermark
         | 
| 33 | 
            +
                    self.pipe.watermark = None
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                    # save the original VAE
         | 
| 36 | 
            +
                    decoders = OrderedDict([("no watermark", self.pipe.vae)])
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                    # load the patched VAEs
         | 
| 39 | 
            +
                    for name in ("weak", "medium", "strong", "extreme"):
         | 
| 40 | 
            +
                        vae = AutoencoderKL.from_pretrained(f"imatag/stable-signature-bzh-sdxl-vae-{name}", torch_dtype=torch.float16).to("cuda")
         | 
| 41 | 
            +
                        decoders[name] = vae
         | 
| 42 | 
            +
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 43 | 
             
                    self.decoders = decoders
         | 
| 44 |  | 
| 45 | 
             
                def generate(self, mode, seed, prompt):
         | 
| 46 | 
             
                    generator = torch.Generator(device=device)
         | 
|  | |
| 47 | 
             
                    torch.manual_seed(seed)
         | 
| 48 |  | 
| 49 | 
            +
                    # load the patched VAE
         | 
| 50 | 
            +
                    vae = self.decoders[mode]
         | 
| 51 | 
            +
                    self.pipe.vae = vae
         | 
| 52 |  | 
| 53 | 
             
                    output = self.pipe(prompt, num_inference_steps=4, guidance_scale=0.0, output_type="pil")
         | 
| 54 | 
            +
                    return output.images[0]
         | 
| 55 |  | 
| 56 | 
             
                def attack_detect(self, img, jpeg_compression, downscale, crop, saturation):
         | 
| 57 |  | 
|  | |
| 58 | 
             
                    img = img.convert("RGB")
         | 
| 59 |  | 
| 60 | 
             
                    # attack
         | 
|  | |
| 62 | 
             
                        size = img.size
         | 
| 63 | 
             
                        size = (int(size[0] / downscale), int(size[1] / downscale))
         | 
| 64 | 
             
                        img = img.resize(size, Image.Resampling.LANCZOS)
         | 
| 65 | 
            +
             | 
| 66 | 
             
                    if crop != 0:
         | 
| 67 | 
             
                        width, height = img.size
         | 
| 68 | 
             
                        area = width * height
         | 
|  | |
| 102 |  | 
| 103 | 
             
                    mf.seek(0)
         | 
| 104 | 
             
                    img0 = Image.open(mf) # reload to show JPEG attack
         | 
| 105 | 
            +
             | 
| 106 | 
             
                    result = "No watermark detected."
         | 
|  | |
| 107 | 
             
                    rpv = 10**int(math.log10(pvalue))
         | 
| 108 | 
             
                    if pvalue < 1e-3:
         | 
| 109 | 
            +
                        result = "Watermark detected with low confidence (p-value<%.0e)" % rpv
         | 
| 110 | 
             
                    if pvalue < 1e-9:
         | 
| 111 | 
            +
                        result = "Watermark detected with high confidence (p-value<%.0e)" % rpv
         | 
| 112 | 
             
                    return (img0, result)
         | 
| 113 |  | 
|  | |
| 114 | 
             
            def interface():
         | 
| 115 | 
             
                prompt = "sailing ship in storm by Rembrandt"
         | 
| 116 |  | 
