Spaces:
Runtime error
Runtime error
| import socketserver | |
| socketserver.TCPServer.allow_reuse_address = True | |
| import gradio as gr | |
| import torch | |
| from diffusers import StableDiffusionPipeline | |
| pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base", torch_dtype=torch.float16) | |
| # load the patched VQ-VAE | |
| patched_decoder_ckpt = "checkpoint_000.pth" | |
| if patched_decoder_ckpt is not None: | |
| sd2 = torch.load(patched_decoder_ckpt)['ldm_decoder'] | |
| #print("patching keys for first_stage_model: ", sd2.keys()) | |
| msg = pipe.vae.load_state_dict(sd2, strict=False) | |
| print(f"loaded LDM decoder state_dict with message\n{msg}") | |
| print("you should check that the decoder keys are correctly matched") | |
| pipe = pipe.to("cuda") | |
| prompt = "sailing ship in storm by Rembrandt" | |
| def generate(prompt): | |
| output = pipe(prompt, num_inference_steps=50, output_type="pil") | |
| output.images[0].save("result.png") | |
| return output.images[0] | |
| iface = gr.Interface(fn=generate, inputs=[gr.Textbox(label="Prompt", value=prompt)], outputs=[gr.Image(type="pil")]) | |
| iface.launch(server_name="0.0.0.0") | |