Spaces:
Running
Running
Update examples (#2)
Browse files- Add images to LFS tracking (cee3f42e99d0067d36da79488a5b9e04a49f3fc2)
- Update examples for v2 (d1367b488a431acf5d3210b05e8b535aef890379)
- fix filter (affa08952db57e0154aa7de63366972abd49f69e)
- Add embeddings LFS tracking (cd0baf2af5c4c2564966619a43174d3511faea93)
- revert back to local inference code (1e724771249af95e9a7d9e3494291828eb225966)
- .gitattributes +4 -0
- app.py +62 -34
- components/query.py +1 -1
- components/templates.py +82 -0
- components/txt_emb_species.json +3 -0
- examples/{Phoca-vitulina.png β Asparagales-Orchidaceae.jpg} +2 -2
- examples/{Sarcoscypha-coccinea.jpeg β Bovidae-Oryx.jpg} +2 -2
- examples/{Felis-catus.jpeg β Carcharhinus-melanopterus.jpg} +2 -2
- examples/{Onoclea-sensibilis.jpg β Cebidae-Cebus.jpg} +2 -2
- examples/Cortinarius-austroalbidus.jpg +3 -0
- examples/Onoclea-hintonii.jpg +0 -0
- examples/{Actinostola-abyssorum.png β Solanales-Petunia.png} +2 -2
- examples/cheetah.jpg +3 -0
- examples/coral-snake.jpeg +0 -0
- examples/{Amanita-muscaria.jpeg β house-finch.jpeg} +2 -2
- examples/jaguar.jpg +3 -0
- examples/leopard.jpg +3 -0
- examples/milk-snake.png +0 -3
- examples/monarch.jpg +3 -0
- examples/viceroy.jpg +3 -0
.gitattributes
CHANGED
|
@@ -42,3 +42,7 @@ examples/Onoclea-sensibilis.jpg filter=lfs diff=lfs merge=lfs -text
|
|
| 42 |
examples/Phoca-vitulina.png filter=lfs diff=lfs merge=lfs -text
|
| 43 |
examples/Sarcoscypha-coccinea.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 44 |
examples/Ursus-arctos.jpeg filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
examples/Phoca-vitulina.png filter=lfs diff=lfs merge=lfs -text
|
| 43 |
examples/Sarcoscypha-coccinea.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 44 |
examples/Ursus-arctos.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 45 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 46 |
+
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 47 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
| 48 |
+
components/txt_emb_species.json filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
|
@@ -11,9 +11,10 @@ import torch
|
|
| 11 |
import torch.nn.functional as F
|
| 12 |
from open_clip import create_model, get_tokenizer
|
| 13 |
from torchvision import transforms
|
|
|
|
| 14 |
|
|
|
|
| 15 |
from components.query import get_sample
|
| 16 |
-
from bioclip import CustomLabelsClassifier
|
| 17 |
|
| 18 |
log_format = "[%(asctime)s] [%(levelname)s] [%(name)s] %(message)s"
|
| 19 |
logging.basicConfig(level=logging.INFO, format=log_format)
|
|
@@ -27,16 +28,16 @@ METADATA_PATH = "components/metadata.parquet"
|
|
| 27 |
metadata_df = pl.read_parquet(METADATA_PATH, low_memory = False)
|
| 28 |
metadata_df = metadata_df.with_columns(pl.col(["eol_page_id", "gbif_id"]).cast(pl.Int64))
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
|
|
|
| 32 |
|
| 33 |
-
|
| 34 |
-
txt_names_json = "embeddings/txt_emb_species.json"
|
| 35 |
|
| 36 |
min_prob = 1e-9
|
| 37 |
k = 5
|
| 38 |
|
| 39 |
-
device = torch.device("
|
| 40 |
|
| 41 |
preprocess_img = transforms.Compose(
|
| 42 |
[
|
|
@@ -52,41 +53,45 @@ preprocess_img = transforms.Compose(
|
|
| 52 |
ranks = ("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species")
|
| 53 |
|
| 54 |
open_domain_examples = [
|
| 55 |
-
["examples/
|
| 56 |
-
["examples/
|
| 57 |
-
["examples/
|
| 58 |
-
["examples/
|
|
|
|
|
|
|
| 59 |
]
|
| 60 |
zero_shot_examples = [
|
| 61 |
[
|
| 62 |
-
"examples/
|
| 63 |
-
"
|
| 64 |
],
|
| 65 |
-
["examples/milk-snake.png", "coral snake\nmilk snake"],
|
| 66 |
-
["examples/coral-snake.jpeg", "coral snake\nmilk snake"],
|
| 67 |
[
|
| 68 |
-
"examples/
|
| 69 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
],
|
| 71 |
[
|
| 72 |
-
"examples/
|
| 73 |
-
"
|
| 74 |
],
|
| 75 |
[
|
| 76 |
-
"examples/
|
| 77 |
-
"
|
| 78 |
],
|
| 79 |
[
|
| 80 |
-
"examples/
|
| 81 |
-
"
|
| 82 |
],
|
| 83 |
[
|
| 84 |
-
"examples/
|
| 85 |
-
"
|
| 86 |
],
|
| 87 |
[
|
| 88 |
-
"examples/
|
| 89 |
-
"
|
| 90 |
],
|
| 91 |
]
|
| 92 |
|
|
@@ -95,13 +100,32 @@ def indexed(lst, indices):
|
|
| 95 |
return [lst[i] for i in indices]
|
| 96 |
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
def zero_shot_classification(img, cls_str: str) -> dict[str, float]:
|
| 99 |
classes = [cls.strip() for cls in cls_str.split("\n") if cls.strip()]
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
)
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
|
| 107 |
def format_name(taxon, common):
|
|
@@ -165,16 +189,20 @@ def change_output(choice):
|
|
| 165 |
|
| 166 |
if __name__ == "__main__":
|
| 167 |
logger.info("Starting.")
|
| 168 |
-
model = create_model(
|
| 169 |
model = model.to(device)
|
| 170 |
logger.info("Created model.")
|
| 171 |
|
| 172 |
model = torch.compile(model)
|
| 173 |
logger.info("Compiled model.")
|
| 174 |
|
| 175 |
-
tokenizer = get_tokenizer(
|
| 176 |
|
| 177 |
-
txt_emb = torch.from_numpy(np.load(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
with open(txt_names_json) as fd:
|
| 179 |
txt_names = json.load(fd)
|
| 180 |
|
|
|
|
| 11 |
import torch.nn.functional as F
|
| 12 |
from open_clip import create_model, get_tokenizer
|
| 13 |
from torchvision import transforms
|
| 14 |
+
from huggingface_hub import hf_hub_download
|
| 15 |
|
| 16 |
+
from components.templates import openai_imagenet_template
|
| 17 |
from components.query import get_sample
|
|
|
|
| 18 |
|
| 19 |
log_format = "[%(asctime)s] [%(levelname)s] [%(name)s] %(message)s"
|
| 20 |
logging.basicConfig(level=logging.INFO, format=log_format)
|
|
|
|
| 28 |
metadata_df = pl.read_parquet(METADATA_PATH, low_memory = False)
|
| 29 |
metadata_df = metadata_df.with_columns(pl.col(["eol_page_id", "gbif_id"]).cast(pl.Int64))
|
| 30 |
|
| 31 |
+
model_str = "hf-hub:imageomics/bioclip-2"
|
| 32 |
+
tokenizer_str = "ViT-L-14"
|
| 33 |
+
HF_DATA_STR = "imageomics/TreeOfLife-200M"
|
| 34 |
|
| 35 |
+
txt_names_json = "components/txt_emb_species.json"
|
|
|
|
| 36 |
|
| 37 |
min_prob = 1e-9
|
| 38 |
k = 5
|
| 39 |
|
| 40 |
+
device = torch.device("cpu")
|
| 41 |
|
| 42 |
preprocess_img = transforms.Compose(
|
| 43 |
[
|
|
|
|
| 53 |
ranks = ("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species")
|
| 54 |
|
| 55 |
open_domain_examples = [
|
| 56 |
+
["examples/Carcharhinus-melanopterus.jpg", "Species"],
|
| 57 |
+
["examples/house-finch.jpeg", "Species"],
|
| 58 |
+
["examples/Bovidae-Oryx.jpg", "Genus"],
|
| 59 |
+
["examples/Cebidae-Cebus.jpg", "Genus"],
|
| 60 |
+
["examples/Solanales-Petunia.png", "Genus"],
|
| 61 |
+
["examples/Asparagales-Orchidaceae.jpg", "Family"],
|
| 62 |
]
|
| 63 |
zero_shot_examples = [
|
| 64 |
[
|
| 65 |
+
"examples/Cortinarius-austroalbidus.jpg",
|
| 66 |
+
"Cortinarius austroalbidus\nCortinarius armillatus\nCortinarius caperatus"
|
| 67 |
],
|
|
|
|
|
|
|
| 68 |
[
|
| 69 |
+
"examples/leopard.jpg",
|
| 70 |
+
"Jaguar\nLeopard\nCheetah",
|
| 71 |
+
],
|
| 72 |
+
[
|
| 73 |
+
"examples/jaguar.jpg",
|
| 74 |
+
"Jaguar\nLeopard\nCheetah",
|
| 75 |
],
|
| 76 |
[
|
| 77 |
+
"examples/cheetah.jpg",
|
| 78 |
+
"Jaguar\nLeopard\nCheetah",
|
| 79 |
],
|
| 80 |
[
|
| 81 |
+
"examples/monarch.jpg",
|
| 82 |
+
"Danaus plexippusβ―ββ―Monarch\nLimenitis archippusβ―ββ―Viceroy",
|
| 83 |
],
|
| 84 |
[
|
| 85 |
+
"examples/viceroy.jpg",
|
| 86 |
+
"Danaus plexippusβ―ββ―Monarch\nLimenitis archippusβ―ββ―Viceroy",
|
| 87 |
],
|
| 88 |
[
|
| 89 |
+
"examples/Ursus-arctos.jpeg",
|
| 90 |
+
"brown bear\nblack bear\npolar bear\nkoala bear\ngrizzly bear",
|
| 91 |
],
|
| 92 |
[
|
| 93 |
+
"examples/Carnegiea-gigantea.png",
|
| 94 |
+
"Carnegiea gigantea\nSchlumbergera opuntioides\nMammillaria albicoma",
|
| 95 |
],
|
| 96 |
]
|
| 97 |
|
|
|
|
| 100 |
return [lst[i] for i in indices]
|
| 101 |
|
| 102 |
|
| 103 |
+
@torch.no_grad()
|
| 104 |
+
def get_txt_features(classnames, templates):
|
| 105 |
+
all_features = []
|
| 106 |
+
for classname in classnames:
|
| 107 |
+
txts = [template(classname) for template in templates]
|
| 108 |
+
txts = tokenizer(txts).to(device)
|
| 109 |
+
txt_features = model.encode_text(txts)
|
| 110 |
+
txt_features = F.normalize(txt_features, dim=-1).mean(dim=0)
|
| 111 |
+
txt_features /= txt_features.norm()
|
| 112 |
+
all_features.append(txt_features)
|
| 113 |
+
all_features = torch.stack(all_features, dim=1)
|
| 114 |
+
return all_features
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
@torch.no_grad()
|
| 118 |
def zero_shot_classification(img, cls_str: str) -> dict[str, float]:
|
| 119 |
classes = [cls.strip() for cls in cls_str.split("\n") if cls.strip()]
|
| 120 |
+
txt_features = get_txt_features(classes, openai_imagenet_template)
|
| 121 |
+
|
| 122 |
+
img = preprocess_img(img).to(device)
|
| 123 |
+
img_features = model.encode_image(img.unsqueeze(0))
|
| 124 |
+
img_features = F.normalize(img_features, dim=-1)
|
| 125 |
+
|
| 126 |
+
logits = (model.logit_scale.exp() * img_features @ txt_features).squeeze()
|
| 127 |
+
probs = F.softmax(logits, dim=0).to("cpu").tolist()
|
| 128 |
+
return {cls: prob for cls, prob in zip(classes, probs)}
|
| 129 |
|
| 130 |
|
| 131 |
def format_name(taxon, common):
|
|
|
|
| 189 |
|
| 190 |
if __name__ == "__main__":
|
| 191 |
logger.info("Starting.")
|
| 192 |
+
model = create_model(model_str, output_dict=True, require_pretrained=True)
|
| 193 |
model = model.to(device)
|
| 194 |
logger.info("Created model.")
|
| 195 |
|
| 196 |
model = torch.compile(model)
|
| 197 |
logger.info("Compiled model.")
|
| 198 |
|
| 199 |
+
tokenizer = get_tokenizer(tokenizer_str)
|
| 200 |
|
| 201 |
+
txt_emb = torch.from_numpy(np.load(hf_hub_download(
|
| 202 |
+
repo_id=HF_DATA_STR,
|
| 203 |
+
filename="embeddings/txt_emb_species.npy",
|
| 204 |
+
repo_type="dataset",
|
| 205 |
+
)))
|
| 206 |
with open(txt_names_json) as fd:
|
| 207 |
txt_names = json.load(fd)
|
| 208 |
|
components/query.py
CHANGED
|
@@ -118,7 +118,7 @@ def get_sample_data(df, pred_taxon, rank):
|
|
| 118 |
return None, np.nan, "", False
|
| 119 |
|
| 120 |
# First, try to find entries with empty lower ranks
|
| 121 |
-
exact_df = df
|
| 122 |
for lower_rank in RANKS[rank + 1:]:
|
| 123 |
exact_df = exact_df.filter((pl.col(lower_rank).is_null()) | (pl.col(lower_rank) == ""))
|
| 124 |
|
|
|
|
| 118 |
return None, np.nan, "", False
|
| 119 |
|
| 120 |
# First, try to find entries with empty lower ranks
|
| 121 |
+
exact_df = df
|
| 122 |
for lower_rank in RANKS[rank + 1:]:
|
| 123 |
exact_df = exact_df.filter((pl.col(lower_rank).is_null()) | (pl.col(lower_rank) == ""))
|
| 124 |
|
components/templates.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
openai_imagenet_template = [
|
| 2 |
+
lambda c: f"a bad photo of a {c}.",
|
| 3 |
+
lambda c: f"a photo of many {c}.",
|
| 4 |
+
lambda c: f"a sculpture of a {c}.",
|
| 5 |
+
lambda c: f"a photo of the hard to see {c}.",
|
| 6 |
+
lambda c: f"a low resolution photo of the {c}.",
|
| 7 |
+
lambda c: f"a rendering of a {c}.",
|
| 8 |
+
lambda c: f"graffiti of a {c}.",
|
| 9 |
+
lambda c: f"a bad photo of the {c}.",
|
| 10 |
+
lambda c: f"a cropped photo of the {c}.",
|
| 11 |
+
lambda c: f"a tattoo of a {c}.",
|
| 12 |
+
lambda c: f"the embroidered {c}.",
|
| 13 |
+
lambda c: f"a photo of a hard to see {c}.",
|
| 14 |
+
lambda c: f"a bright photo of a {c}.",
|
| 15 |
+
lambda c: f"a photo of a clean {c}.",
|
| 16 |
+
lambda c: f"a photo of a dirty {c}.",
|
| 17 |
+
lambda c: f"a dark photo of the {c}.",
|
| 18 |
+
lambda c: f"a drawing of a {c}.",
|
| 19 |
+
lambda c: f"a photo of my {c}.",
|
| 20 |
+
lambda c: f"the plastic {c}.",
|
| 21 |
+
lambda c: f"a photo of the cool {c}.",
|
| 22 |
+
lambda c: f"a close-up photo of a {c}.",
|
| 23 |
+
lambda c: f"a black and white photo of the {c}.",
|
| 24 |
+
lambda c: f"a painting of the {c}.",
|
| 25 |
+
lambda c: f"a painting of a {c}.",
|
| 26 |
+
lambda c: f"a pixelated photo of the {c}.",
|
| 27 |
+
lambda c: f"a sculpture of the {c}.",
|
| 28 |
+
lambda c: f"a bright photo of the {c}.",
|
| 29 |
+
lambda c: f"a cropped photo of a {c}.",
|
| 30 |
+
lambda c: f"a plastic {c}.",
|
| 31 |
+
lambda c: f"a photo of the dirty {c}.",
|
| 32 |
+
lambda c: f"a jpeg corrupted photo of a {c}.",
|
| 33 |
+
lambda c: f"a blurry photo of the {c}.",
|
| 34 |
+
lambda c: f"a photo of the {c}.",
|
| 35 |
+
lambda c: f"a good photo of the {c}.",
|
| 36 |
+
lambda c: f"a rendering of the {c}.",
|
| 37 |
+
lambda c: f"a {c} in a video game.",
|
| 38 |
+
lambda c: f"a photo of one {c}.",
|
| 39 |
+
lambda c: f"a doodle of a {c}.",
|
| 40 |
+
lambda c: f"a close-up photo of the {c}.",
|
| 41 |
+
lambda c: f"a photo of a {c}.",
|
| 42 |
+
lambda c: f"the origami {c}.",
|
| 43 |
+
lambda c: f"the {c} in a video game.",
|
| 44 |
+
lambda c: f"a sketch of a {c}.",
|
| 45 |
+
lambda c: f"a doodle of the {c}.",
|
| 46 |
+
lambda c: f"a origami {c}.",
|
| 47 |
+
lambda c: f"a low resolution photo of a {c}.",
|
| 48 |
+
lambda c: f"the toy {c}.",
|
| 49 |
+
lambda c: f"a rendition of the {c}.",
|
| 50 |
+
lambda c: f"a photo of the clean {c}.",
|
| 51 |
+
lambda c: f"a photo of a large {c}.",
|
| 52 |
+
lambda c: f"a rendition of a {c}.",
|
| 53 |
+
lambda c: f"a photo of a nice {c}.",
|
| 54 |
+
lambda c: f"a photo of a weird {c}.",
|
| 55 |
+
lambda c: f"a blurry photo of a {c}.",
|
| 56 |
+
lambda c: f"a cartoon {c}.",
|
| 57 |
+
lambda c: f"art of a {c}.",
|
| 58 |
+
lambda c: f"a sketch of the {c}.",
|
| 59 |
+
lambda c: f"a embroidered {c}.",
|
| 60 |
+
lambda c: f"a pixelated photo of a {c}.",
|
| 61 |
+
lambda c: f"itap of the {c}.",
|
| 62 |
+
lambda c: f"a jpeg corrupted photo of the {c}.",
|
| 63 |
+
lambda c: f"a good photo of a {c}.",
|
| 64 |
+
lambda c: f"a plushie {c}.",
|
| 65 |
+
lambda c: f"a photo of the nice {c}.",
|
| 66 |
+
lambda c: f"a photo of the small {c}.",
|
| 67 |
+
lambda c: f"a photo of the weird {c}.",
|
| 68 |
+
lambda c: f"the cartoon {c}.",
|
| 69 |
+
lambda c: f"art of the {c}.",
|
| 70 |
+
lambda c: f"a drawing of the {c}.",
|
| 71 |
+
lambda c: f"a photo of the large {c}.",
|
| 72 |
+
lambda c: f"a black and white photo of a {c}.",
|
| 73 |
+
lambda c: f"the plushie {c}.",
|
| 74 |
+
lambda c: f"a dark photo of a {c}.",
|
| 75 |
+
lambda c: f"itap of a {c}.",
|
| 76 |
+
lambda c: f"graffiti of the {c}.",
|
| 77 |
+
lambda c: f"a toy {c}.",
|
| 78 |
+
lambda c: f"itap of my {c}.",
|
| 79 |
+
lambda c: f"a photo of a cool {c}.",
|
| 80 |
+
lambda c: f"a photo of a small {c}.",
|
| 81 |
+
lambda c: f"a tattoo of the {c}.",
|
| 82 |
+
]
|
components/txt_emb_species.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4a81b2931330d7e0e5cf1e9a96982d7eed4ac187b08ad99533c9dad523f5b4f4
|
| 3 |
+
size 110609010
|
examples/{Phoca-vitulina.png β Asparagales-Orchidaceae.jpg}
RENAMED
|
File without changes
|
examples/{Sarcoscypha-coccinea.jpeg β Bovidae-Oryx.jpg}
RENAMED
|
File without changes
|
examples/{Felis-catus.jpeg β Carcharhinus-melanopterus.jpg}
RENAMED
|
File without changes
|
examples/{Onoclea-sensibilis.jpg β Cebidae-Cebus.jpg}
RENAMED
|
File without changes
|
examples/Cortinarius-austroalbidus.jpg
ADDED
|
Git LFS Details
|
examples/Onoclea-hintonii.jpg
DELETED
|
Binary file (88.1 kB)
|
|
|
examples/{Actinostola-abyssorum.png β Solanales-Petunia.png}
RENAMED
|
File without changes
|
examples/cheetah.jpg
ADDED
|
Git LFS Details
|
examples/coral-snake.jpeg
DELETED
|
Binary file (51.8 kB)
|
|
|
examples/{Amanita-muscaria.jpeg β house-finch.jpeg}
RENAMED
|
File without changes
|
examples/jaguar.jpg
ADDED
|
Git LFS Details
|
examples/leopard.jpg
ADDED
|
Git LFS Details
|
examples/milk-snake.png
DELETED
Git LFS Details
|
examples/monarch.jpg
ADDED
|
Git LFS Details
|
examples/viceroy.jpg
ADDED
|
Git LFS Details
|