Spaces:
Paused
Paused
Upload 4 files
Browse files- app.py +361 -0
- module.py +275 -0
- requirements.txt +9 -0
- sstvit.py +94 -0
app.py
ADDED
|
@@ -0,0 +1,361 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import io
|
| 3 |
+
import collections
|
| 4 |
+
from scipy.io import loadmat
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
import argparse
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.utils.data as Data
|
| 12 |
+
import torch.backends.cudnn as cudnn
|
| 13 |
+
from scipy.io import loadmat
|
| 14 |
+
from scipy.io import savemat
|
| 15 |
+
from torch import optim
|
| 16 |
+
from torch.autograd import Variable
|
| 17 |
+
from sstvit import SSTViT
|
| 18 |
+
from sklearn.metrics import confusion_matrix
|
| 19 |
+
|
| 20 |
+
import matplotlib.pyplot as plt
|
| 21 |
+
from matplotlib import colors
|
| 22 |
+
import numpy as np
|
| 23 |
+
from patchify import patchify, unpatchify
|
| 24 |
+
import time
|
| 25 |
+
from matplotlib import colors as mcolors
|
| 26 |
+
import base64
|
| 27 |
+
import pandas as pd
|
| 28 |
+
import st_aggrid
|
| 29 |
+
import os
|
| 30 |
+
import json
|
| 31 |
+
import plotly.express as px
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
css='''
|
| 35 |
+
<style>
|
| 36 |
+
section.main > div {max-width:60rem}
|
| 37 |
+
</style>
|
| 38 |
+
'''
|
| 39 |
+
st.markdown(css, unsafe_allow_html=True)
|
| 40 |
+
|
| 41 |
+
class Args(dict):
|
| 42 |
+
__setattr__ = dict.__setitem__
|
| 43 |
+
__getattr__ = dict.__getitem__
|
| 44 |
+
|
| 45 |
+
args = {
|
| 46 |
+
'dataset' : 'mg',
|
| 47 |
+
'flag_test' : 'train',
|
| 48 |
+
'gpu_id' : 0,
|
| 49 |
+
'seed' : int(0),
|
| 50 |
+
'batch_size' : int(64),
|
| 51 |
+
'test_freq' : int(10),
|
| 52 |
+
'patches' : int(5),
|
| 53 |
+
'band_patches' : int(1),
|
| 54 |
+
'epoches' : int(2000),
|
| 55 |
+
'learning_rate' : float(5e-4),
|
| 56 |
+
'gamma' : float(0.9),
|
| 57 |
+
'weight_decay' : float(0),
|
| 58 |
+
'train_number' : int(500)
|
| 59 |
+
}
|
| 60 |
+
args = Args(args) # dict2object
|
| 61 |
+
obj = args.copy() # object2dict
|
| 62 |
+
|
| 63 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id)
|
| 64 |
+
|
| 65 |
+
def test_epoch(model, test_loader):
|
| 66 |
+
|
| 67 |
+
pre = np.array([])
|
| 68 |
+
for batch_idx, (batch_data_t1, batch_data_t2) in enumerate(test_loader):
|
| 69 |
+
batch_data_t1 = batch_data_t1
|
| 70 |
+
batch_data_t2 = batch_data_t2
|
| 71 |
+
|
| 72 |
+
batch_pred = model(batch_data_t1,batch_data_t2)
|
| 73 |
+
|
| 74 |
+
_, pred = batch_pred.topk(1, 1, True, True)
|
| 75 |
+
pp = pred.squeeze()
|
| 76 |
+
pre = np.append(pre, pp.data.cpu().numpy())
|
| 77 |
+
return pre
|
| 78 |
+
mdic = ['Before','After','Before','After']
|
| 79 |
+
colors = ['#3b68f8', '#ff0201', '#23fe01'] #-1,0,1,2,3
|
| 80 |
+
cmap = mcolors.ListedColormap(colors)
|
| 81 |
+
# Parameter Setting
|
| 82 |
+
np.random.seed(args.seed)
|
| 83 |
+
torch.manual_seed(args.seed)
|
| 84 |
+
torch.cuda.manual_seed(args.seed)
|
| 85 |
+
cudnn.deterministic = True
|
| 86 |
+
cudnn.benchmark = False
|
| 87 |
+
|
| 88 |
+
def encode_masks_to_rgb(masks):
|
| 89 |
+
colors = [(0, 0, 255), (255, 0, 0), (0, 255, 0)]
|
| 90 |
+
# Create an empty RGB image
|
| 91 |
+
height, width = masks.shape
|
| 92 |
+
rgb_image = np.zeros((height, width, 3), dtype=np.uint8)
|
| 93 |
+
|
| 94 |
+
# Assign colors based on the mask values
|
| 95 |
+
for i in range(len(colors)):
|
| 96 |
+
mask_indices = masks == i
|
| 97 |
+
rgb_image[mask_indices] = colors[i]
|
| 98 |
+
|
| 99 |
+
return rgb_image
|
| 100 |
+
def count_pixel(pred):
|
| 101 |
+
image = Image.fromarray(pred)
|
| 102 |
+
|
| 103 |
+
# Define the colors you want to count in RGB format
|
| 104 |
+
color2label = {
|
| 105 |
+
(0, 0, 255): "Non Mangrove",
|
| 106 |
+
(255, 0, 0): "Mangrove Loss",
|
| 107 |
+
(0, 255, 0): "Mangrove Before",
|
| 108 |
+
}
|
| 109 |
+
|
| 110 |
+
# Create a flattened list of pixel values
|
| 111 |
+
pixels = list(image.getdata())
|
| 112 |
+
# Count the number of pixels for each color
|
| 113 |
+
color_counts = collections.Counter(pixels)
|
| 114 |
+
# Calculate the total number of pixels in the image
|
| 115 |
+
total_pixels = len(pixels)
|
| 116 |
+
|
| 117 |
+
# Initialize a dictionary to store the average number of pixels for each class
|
| 118 |
+
average_counts = {color2label[label]: (count / total_pixels)*100 for label, count in color_counts.items()}
|
| 119 |
+
|
| 120 |
+
class_counts = {color2label[label]: count for label, count in color_counts.items()}
|
| 121 |
+
|
| 122 |
+
pix_avg = {}
|
| 123 |
+
pix_count = {}
|
| 124 |
+
for _, i in color2label.items():
|
| 125 |
+
try:
|
| 126 |
+
pix_avg[i] = average_counts[i]
|
| 127 |
+
pix_count[i] = class_counts[i]
|
| 128 |
+
except:
|
| 129 |
+
pix_avg[i] = 0
|
| 130 |
+
pix_count[i] = 0
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
x = {
|
| 134 |
+
"class": list(pix_avg.keys()),
|
| 135 |
+
"percentage": list(pix_avg.values()),
|
| 136 |
+
"pixel_count": list(pix_count.values())
|
| 137 |
+
}
|
| 138 |
+
# print(x)
|
| 139 |
+
|
| 140 |
+
return pd.DataFrame(x)
|
| 141 |
+
def count_pixel1(pred):
|
| 142 |
+
image = Image.fromarray(pred)
|
| 143 |
+
|
| 144 |
+
# Define the colors you want to count in RGB format
|
| 145 |
+
color2label = {
|
| 146 |
+
(0, 0, 255): "Non Mangrove",
|
| 147 |
+
(255, 0, 0): "Mangrove Loss",
|
| 148 |
+
(0, 255, 0): "Mangrove After",
|
| 149 |
+
}
|
| 150 |
+
|
| 151 |
+
# Create a flattened list of pixel values
|
| 152 |
+
pixels = list(image.getdata())
|
| 153 |
+
# Count the number of pixels for each color
|
| 154 |
+
color_counts = collections.Counter(pixels)
|
| 155 |
+
# Calculate the total number of pixels in the image
|
| 156 |
+
total_pixels = len(pixels)
|
| 157 |
+
|
| 158 |
+
# Initialize a dictionary to store the average number of pixels for each class
|
| 159 |
+
average_counts = {color2label[label]: (count / total_pixels)*100 for label, count in color_counts.items()}
|
| 160 |
+
|
| 161 |
+
class_counts = {color2label[label]: count for label, count in color_counts.items()}
|
| 162 |
+
|
| 163 |
+
pix_avg = {}
|
| 164 |
+
pix_count = {}
|
| 165 |
+
for _, i in color2label.items():
|
| 166 |
+
try:
|
| 167 |
+
pix_avg[i] = average_counts[i]
|
| 168 |
+
pix_count[i] = class_counts[i]
|
| 169 |
+
except:
|
| 170 |
+
pix_avg[i] = 0
|
| 171 |
+
pix_count[i] = 0
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
x = {
|
| 175 |
+
"class": list(pix_avg.keys()),
|
| 176 |
+
"percentage": list(pix_avg.values()),
|
| 177 |
+
"pixel_count": list(pix_count.values())
|
| 178 |
+
}
|
| 179 |
+
# print(x)
|
| 180 |
+
|
| 181 |
+
return pd.DataFrame(x)
|
| 182 |
+
|
| 183 |
+
file = st.file_uploader("Upload file", type=['mat'])
|
| 184 |
+
|
| 185 |
+
if file:
|
| 186 |
+
|
| 187 |
+
data_img2 = loadmat(file)['data_img2']
|
| 188 |
+
data_img1 = loadmat(file)['data_img1']
|
| 189 |
+
st.subheader("Preview Dataset")
|
| 190 |
+
col1, col2 = st.columns(2)
|
| 191 |
+
with col1:
|
| 192 |
+
fig = plt.figure(figsize=(5, 5))
|
| 193 |
+
plt.subplot(121)
|
| 194 |
+
plt.imshow(data_img1)
|
| 195 |
+
plt.title('Before', fontweight='bold')
|
| 196 |
+
plt.xticks([])
|
| 197 |
+
plt.yticks([])
|
| 198 |
+
plt.subplot(122)
|
| 199 |
+
plt.imshow(data_img2)
|
| 200 |
+
plt.title('After', fontweight='bold')
|
| 201 |
+
plt.xticks([])
|
| 202 |
+
plt.yticks([])
|
| 203 |
+
plt.show()
|
| 204 |
+
st.pyplot(fig)
|
| 205 |
+
holder = st.empty()
|
| 206 |
+
if holder.button("Start Prediction"):
|
| 207 |
+
start = time.time()
|
| 208 |
+
holder.empty()
|
| 209 |
+
with st.spinner("Processing, please wait around 7-15 minute"):
|
| 210 |
+
data_t1 = loadmat(file)['data_t1']
|
| 211 |
+
data_t2 = loadmat(file)['data_t2']
|
| 212 |
+
L_post = loadmat(file)['L_post']
|
| 213 |
+
L_pre = loadmat(file)['L_pre']
|
| 214 |
+
data_img1 = loadmat(file)['data_img1']
|
| 215 |
+
data_img2 = loadmat(file)['data_img2']
|
| 216 |
+
|
| 217 |
+
L_post = np.double(L_post)
|
| 218 |
+
L_post[L_post==0]=-0.8
|
| 219 |
+
L_post[L_post==1]=0
|
| 220 |
+
L_post[L_post==0]=-0.2
|
| 221 |
+
|
| 222 |
+
L_pre = np.double(L_pre)
|
| 223 |
+
L_pre[L_pre==0]=-0.8
|
| 224 |
+
L_pre[L_pre==1]=0
|
| 225 |
+
L_pre[L_pre==0]=-0.2
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
data_t1 = data_t1[:L_post.shape[0],:L_post.shape[1],:]
|
| 229 |
+
data_t2 = data_t2[:L_post.shape[0],:L_post.shape[1],:]
|
| 230 |
+
data_cb1 = np.zeros(shape=(L_post.shape[0],L_post.shape[1],11),dtype=np.float32)
|
| 231 |
+
data_cb2 = np.zeros(shape=(L_post.shape[0],L_post.shape[1],11),dtype=np.float32)
|
| 232 |
+
data_cb1[:,:,:10]=data_t1
|
| 233 |
+
data_cb1[:,:,10]=L_pre
|
| 234 |
+
data_cb2[:,:,:10]=data_t2
|
| 235 |
+
data_cb2[:,:,10]=L_post
|
| 236 |
+
height, width, band = data_cb1.shape
|
| 237 |
+
height=height-4
|
| 238 |
+
width = width-4
|
| 239 |
+
x1 = patchify(data_cb1, (5, 5, 11), step=1).reshape(-1,5*5, 11)
|
| 240 |
+
x2 = patchify(data_cb2, (5, 5, 11), step=1).reshape(-1,5*5, 11)
|
| 241 |
+
|
| 242 |
+
# create model
|
| 243 |
+
model = SSTViT(
|
| 244 |
+
image_size = 5,
|
| 245 |
+
near_band = args.band_patches,
|
| 246 |
+
num_patches = 11,
|
| 247 |
+
num_classes = 3,
|
| 248 |
+
dim = 32,
|
| 249 |
+
depth = 2,
|
| 250 |
+
heads = 4,
|
| 251 |
+
dim_head=16,
|
| 252 |
+
mlp_dim = 8,
|
| 253 |
+
b_dim = 512,
|
| 254 |
+
b_depth = 3,
|
| 255 |
+
b_heads = 8,
|
| 256 |
+
b_dim_head= 32,
|
| 257 |
+
b_mlp_head = 8,
|
| 258 |
+
dropout = 0.2,
|
| 259 |
+
emb_dropout = 0.1,
|
| 260 |
+
)
|
| 261 |
+
model.load_state_dict(torch.load("model/lsstformer.pth",map_location=torch.device("cpu")))
|
| 262 |
+
|
| 263 |
+
x1_true_band=torch.from_numpy(x1.transpose(0,2,1)).type(torch.FloatTensor)
|
| 264 |
+
x2_true_band=torch.from_numpy(x1.transpose(0,2,1)).type(torch.FloatTensor)
|
| 265 |
+
Label_true=Data.TensorDataset(x1_true_band,x2_true_band)
|
| 266 |
+
label_true_loader=Data.DataLoader(Label_true,batch_size=100,shuffle=False)
|
| 267 |
+
model.eval()
|
| 268 |
+
# output classification maps
|
| 269 |
+
pre_u = test_epoch(model, label_true_loader)
|
| 270 |
+
prediction_matrix = pre_u.reshape(height,width)
|
| 271 |
+
|
| 272 |
+
x1_true_band=torch.from_numpy(x1.transpose(0,2,1)).type(torch.FloatTensor)
|
| 273 |
+
x2_true_band=torch.from_numpy(x2.transpose(0,2,1)).type(torch.FloatTensor)
|
| 274 |
+
Label_true=Data.TensorDataset(x1_true_band,x2_true_band)
|
| 275 |
+
label_true_loader=Data.DataLoader(Label_true,batch_size=100,shuffle=False)
|
| 276 |
+
model.eval()
|
| 277 |
+
# output classification maps
|
| 278 |
+
pre_u = test_epoch(model, label_true_loader)
|
| 279 |
+
prediction_matrix2 = pre_u.reshape(height,width)
|
| 280 |
+
A = prediction_matrix.reshape(-1)
|
| 281 |
+
B = prediction_matrix2.reshape(-1)
|
| 282 |
+
mg = np.array(np.where(A==2))
|
| 283 |
+
mg1 = np.array(np.where(B==2))
|
| 284 |
+
mgls = np.array(np.where(B==1))
|
| 285 |
+
class_counts = count_pixel(encode_masks_to_rgb(prediction_matrix))
|
| 286 |
+
class_counts1 = count_pixel1(encode_masks_to_rgb(prediction_matrix2))
|
| 287 |
+
|
| 288 |
+
with st.container():
|
| 289 |
+
st.subheader("Prediction Result")
|
| 290 |
+
col1, col2 = st.columns(2)
|
| 291 |
+
with col1:
|
| 292 |
+
with st.container():
|
| 293 |
+
fig = plt.figure(figsize=(10, 10))
|
| 294 |
+
plt.subplot(121)
|
| 295 |
+
plt.imshow(prediction_matrix, cmap=cmap)
|
| 296 |
+
plt.title('Before',fontsize=25, fontweight='bold')
|
| 297 |
+
plt.xticks([])
|
| 298 |
+
plt.yticks([])
|
| 299 |
+
plt.subplot(122)
|
| 300 |
+
plt.imshow(prediction_matrix2, cmap=cmap)
|
| 301 |
+
plt.title('After',fontsize=25, fontweight='bold')
|
| 302 |
+
plt.xticks([])
|
| 303 |
+
plt.yticks([])
|
| 304 |
+
plt.show()
|
| 305 |
+
st.pyplot(fig)
|
| 306 |
+
buf = io.BytesIO()
|
| 307 |
+
fig.savefig(buf, format="png")
|
| 308 |
+
with col2:
|
| 309 |
+
with st.container():
|
| 310 |
+
table_data = {
|
| 311 |
+
"Total mangrove before":f"{mg.shape[1]*100} m\u00B2",
|
| 312 |
+
"Total mangrove after":f"{mg1.shape[1]*100} m\u00B2",
|
| 313 |
+
"Total mangrove loss":f"{mgls.shape[1]*100} m\u00B2",
|
| 314 |
+
}
|
| 315 |
+
df = pd.DataFrame(list(table_data.items()), columns=['Key', 'Value'])
|
| 316 |
+
|
| 317 |
+
MIN_HEIGHT = 100
|
| 318 |
+
MAX_HEIGHT = 180
|
| 319 |
+
ROW_HEIGHT = 50
|
| 320 |
+
|
| 321 |
+
# st.dataframe(df, hide_index=True, use_container_width=True)
|
| 322 |
+
st_aggrid.AgGrid(df,fit_columns_on_grid_load=True, height=min(MIN_HEIGHT + len(df) * ROW_HEIGHT, MAX_HEIGHT))
|
| 323 |
+
with st.container():
|
| 324 |
+
st.subheader("Pixel Distribution")
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
df = class_counts
|
| 328 |
+
df = df.drop(0)
|
| 329 |
+
df1 = df.drop(1)
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
df2 = class_counts1
|
| 334 |
+
df3 = df2.drop(0)
|
| 335 |
+
vertical_concat = pd.concat([df1, df3], axis=0)
|
| 336 |
+
MIN_HEIGHT = 100
|
| 337 |
+
MAX_HEIGHT = 180
|
| 338 |
+
ROW_HEIGHT = 50
|
| 339 |
+
vertical_concat = vertical_concat.iloc[[0,2,1],:]
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
st_aggrid.AgGrid(vertical_concat,fit_columns_on_grid_load=True, height=min(MIN_HEIGHT + len(vertical_concat) * ROW_HEIGHT, MAX_HEIGHT))
|
| 343 |
+
fig = px.bar(vertical_concat, x='percentage', y='class', color='class', orientation='h',
|
| 344 |
+
color_discrete_sequence=["green","green", "red", "blue"],
|
| 345 |
+
category_orders={"class": ["Mangrove Before","Mangrove After", "Mangrove Loss", "Non Mangrove",]}
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
st.plotly_chart(fig,use_container_width=False)
|
| 349 |
+
end = time.time()
|
| 350 |
+
process = end-start
|
| 351 |
+
st.write('process',process)
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
show_file = st.empty()
|
| 355 |
+
|
| 356 |
+
if not file:
|
| 357 |
+
url = "https://drive.usercontent.google.com/download?id=1u48pMzRWQ2Etfjaq5A0CUjRtGKZaJoJy&export=download&authuser=2&confirm=t&uuid=52b0e01e-377f-42cb-8412-c84aa38a1740&at=APZUnTXslmuCCV1drJ2WWtkZr9BR%3A1710357675310"
|
| 358 |
+
show_file.info("""
|
| 359 |
+
The model was trained using Sentinel-2 imagery, users can upload MAT files to perform LSST-Former for mangrove loss detection models that have been trained in this research. Tool for generate from Sentinel-2 to MAT file i will create later, please download demo dataset bellow. for better in mobile phone, se desktop mode.
|
| 360 |
+
""")
|
| 361 |
+
st.write("download demo datasets this [link](%s)" % url)
|
module.py
ADDED
|
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import numpy as np
|
| 4 |
+
from einops import rearrange, repeat
|
| 5 |
+
|
| 6 |
+
class Residual(nn.Module):
|
| 7 |
+
def __init__(self, fn):
|
| 8 |
+
super().__init__()
|
| 9 |
+
self.fn = fn
|
| 10 |
+
def forward(self, x, **kwargs):
|
| 11 |
+
return self.fn(x, **kwargs) + x
|
| 12 |
+
|
| 13 |
+
class PreNorm(nn.Module):
|
| 14 |
+
def __init__(self, dim, fn):
|
| 15 |
+
super().__init__()
|
| 16 |
+
self.norm = nn.LayerNorm(dim)
|
| 17 |
+
self.fn = fn
|
| 18 |
+
def forward(self, x, **kwargs):
|
| 19 |
+
return self.fn(self.norm(x), **kwargs)
|
| 20 |
+
|
| 21 |
+
class FeedForward(nn.Module):
|
| 22 |
+
def __init__(self, dim, hidden_dim, dropout = 0.):
|
| 23 |
+
super().__init__()
|
| 24 |
+
self.net = nn.Sequential(
|
| 25 |
+
nn.Linear(dim, hidden_dim),
|
| 26 |
+
nn.GELU(),
|
| 27 |
+
nn.Dropout(dropout),
|
| 28 |
+
nn.Linear(hidden_dim, dim),
|
| 29 |
+
nn.Dropout(dropout)
|
| 30 |
+
)
|
| 31 |
+
def forward(self, x):
|
| 32 |
+
return self.net(x)
|
| 33 |
+
|
| 34 |
+
class Attention(nn.Module):
|
| 35 |
+
def __init__(self, dim, heads, dim_head, dropout):
|
| 36 |
+
super().__init__()
|
| 37 |
+
inner_dim = dim_head * heads
|
| 38 |
+
self.heads = heads
|
| 39 |
+
self.scale = dim_head ** -0.5
|
| 40 |
+
|
| 41 |
+
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
| 42 |
+
self.to_out = nn.Sequential(
|
| 43 |
+
nn.Linear(inner_dim, dim),
|
| 44 |
+
nn.Dropout(dropout)
|
| 45 |
+
)
|
| 46 |
+
def forward(self, x, mask = None):
|
| 47 |
+
# x:[b,n,dim]
|
| 48 |
+
b, n, _, h = *x.shape, self.heads
|
| 49 |
+
|
| 50 |
+
# get qkv tuple:([b,n,head_num*head_dim],[...],[...])
|
| 51 |
+
qkv = self.to_qkv(x).chunk(3, dim = -1)
|
| 52 |
+
# split q,k,v from [b,n,head_num*head_dim] -> [b,head_num,n,head_dim]
|
| 53 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
|
| 54 |
+
# transpose(k) * q / sqrt(head_dim) -> [b,head_num,n,n]
|
| 55 |
+
dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale
|
| 56 |
+
mask_value = -torch.finfo(dots.dtype).max
|
| 57 |
+
|
| 58 |
+
# mask value: -inf
|
| 59 |
+
if mask is not None:
|
| 60 |
+
mask = F.pad(mask.flatten(1), (1, 0), value = True)
|
| 61 |
+
assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions'
|
| 62 |
+
mask = mask[:, None, :] * mask[:, :, None]
|
| 63 |
+
dots.masked_fill_(~mask, mask_value)
|
| 64 |
+
del mask
|
| 65 |
+
|
| 66 |
+
# softmax normalization -> attention matrix
|
| 67 |
+
attn = dots.softmax(dim=-1)
|
| 68 |
+
# value * attention matrix -> output
|
| 69 |
+
out = torch.einsum('bhij,bhjd->bhid', attn, v)
|
| 70 |
+
# cat all output -> [b, n, head_num*head_dim]
|
| 71 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
| 72 |
+
out = self.to_out(out)
|
| 73 |
+
return out
|
| 74 |
+
|
| 75 |
+
class CrossAttention(nn.Module):
|
| 76 |
+
def __init__(self, dim, heads, dim_head, dropout):
|
| 77 |
+
super().__init__()
|
| 78 |
+
inner_dim = dim_head * heads
|
| 79 |
+
project_out = not (heads == 1 and dim_head == dim)
|
| 80 |
+
|
| 81 |
+
self.heads = heads
|
| 82 |
+
self.scale = dim_head ** -0.5
|
| 83 |
+
|
| 84 |
+
self.to_k = nn.Linear(dim, inner_dim , bias=False)
|
| 85 |
+
self.to_v = nn.Linear(dim, inner_dim , bias = False)
|
| 86 |
+
self.to_q = nn.Linear(dim, inner_dim, bias = False)
|
| 87 |
+
|
| 88 |
+
self.to_out = nn.Sequential(
|
| 89 |
+
nn.Linear(inner_dim, dim),
|
| 90 |
+
nn.Dropout(dropout)
|
| 91 |
+
) if project_out else nn.Identity()
|
| 92 |
+
|
| 93 |
+
def forward(self, x_qkv):
|
| 94 |
+
b, n, _, h = *x_qkv.shape, self.heads
|
| 95 |
+
|
| 96 |
+
k = self.to_k(x_qkv)
|
| 97 |
+
k = rearrange(k, 'b n (h d) -> b h n d', h = h)
|
| 98 |
+
|
| 99 |
+
v = self.to_v(x_qkv)
|
| 100 |
+
v = rearrange(v, 'b n (h d) -> b h n d', h = h)
|
| 101 |
+
|
| 102 |
+
q = self.to_q(x_qkv[:, 0].unsqueeze(1))
|
| 103 |
+
q = rearrange(q, 'b n (h d) -> b h n d', h = h)
|
| 104 |
+
|
| 105 |
+
dots = torch.einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
| 106 |
+
|
| 107 |
+
attn = dots.softmax(dim=-1)
|
| 108 |
+
|
| 109 |
+
out = torch.einsum('b h i j, b h j d -> b h i d', attn, v)
|
| 110 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
| 111 |
+
out = self.to_out(out)
|
| 112 |
+
return out
|
| 113 |
+
|
| 114 |
+
class Transformer(nn.Module):
|
| 115 |
+
def __init__(self, dim, depth, heads, dim_head, mlp_head, dropout, num_channel):
|
| 116 |
+
super().__init__()
|
| 117 |
+
|
| 118 |
+
self.layers = nn.ModuleList([])
|
| 119 |
+
for _ in range(depth):
|
| 120 |
+
self.layers.append(nn.ModuleList([
|
| 121 |
+
Residual(PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))),
|
| 122 |
+
Residual(PreNorm(dim, FeedForward(dim, mlp_head, dropout = dropout)))
|
| 123 |
+
]))
|
| 124 |
+
|
| 125 |
+
self.skipcat = nn.ModuleList([])
|
| 126 |
+
for _ in range(depth-2):
|
| 127 |
+
self.skipcat.append(nn.Conv2d(num_channel+1, num_channel+1, [1, 2], 1, 0))
|
| 128 |
+
|
| 129 |
+
def forward(self, x, mask = None):
|
| 130 |
+
for attn, ff in self.layers:
|
| 131 |
+
x = attn(x, mask = mask)
|
| 132 |
+
x = ff(x)
|
| 133 |
+
return x
|
| 134 |
+
|
| 135 |
+
class SSTransformer(nn.Module):
|
| 136 |
+
def __init__(self, dim, depth, heads, dim_head, mlp_head, b_dim, b_depth, b_heads, b_dim_head, b_mlp_head, num_patches, dropout):
|
| 137 |
+
super().__init__()
|
| 138 |
+
|
| 139 |
+
self.layers = nn.ModuleList([])
|
| 140 |
+
self.k_layers = nn.ModuleList([])
|
| 141 |
+
self.channels_to_embedding = nn.Linear(num_patches, b_dim)
|
| 142 |
+
self.cls_token = nn.Parameter(torch.randn(1, 1, b_dim))
|
| 143 |
+
for _ in range(depth):
|
| 144 |
+
self.layers.append(nn.ModuleList([
|
| 145 |
+
Residual(PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))),
|
| 146 |
+
Residual(PreNorm(dim, FeedForward(dim, mlp_head, dropout = dropout)))
|
| 147 |
+
]))
|
| 148 |
+
for _ in range(b_depth):
|
| 149 |
+
self.k_layers.append(nn.ModuleList([
|
| 150 |
+
Residual(PreNorm(b_dim, Attention(dim=b_dim, heads=b_heads, dim_head=b_dim_head, dropout = dropout))),
|
| 151 |
+
Residual(PreNorm(b_dim, FeedForward(b_dim, b_mlp_head, dropout = dropout)))
|
| 152 |
+
]))
|
| 153 |
+
|
| 154 |
+
def forward(self, x, mask = None):
|
| 155 |
+
for attn, ff in self.layers:
|
| 156 |
+
x = attn(x, mask = mask)
|
| 157 |
+
x = ff(x)
|
| 158 |
+
x = rearrange(x, 'b n d -> b d n')
|
| 159 |
+
x = self.channels_to_embedding(x)
|
| 160 |
+
b, d, n = x.shape
|
| 161 |
+
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
|
| 162 |
+
x = torch.cat((cls_tokens, x), dim = 1)
|
| 163 |
+
for attn, ff in self.k_layers:
|
| 164 |
+
x = attn(x, mask = mask)
|
| 165 |
+
x = ff(x)
|
| 166 |
+
return x
|
| 167 |
+
|
| 168 |
+
class SSTransformer_pyramid(nn.Module):
|
| 169 |
+
def __init__(self, dim, depth, heads, dim_head, mlp_head, b_dim, b_depth, b_heads, b_dim_head, b_mlp_head, num_patches, dropout):
|
| 170 |
+
super().__init__()
|
| 171 |
+
|
| 172 |
+
self.layers = nn.ModuleList([])
|
| 173 |
+
self.k_layers = nn.ModuleList([])
|
| 174 |
+
self.channels_to_embedding = nn.Linear(num_patches, b_dim)
|
| 175 |
+
self.cls_token = nn.Parameter(torch.randn(1, 1, b_dim))
|
| 176 |
+
for _ in range(depth):
|
| 177 |
+
self.layers.append(nn.ModuleList([
|
| 178 |
+
Residual(PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))),
|
| 179 |
+
Residual(PreNorm(dim, FeedForward(dim, mlp_head, dropout = dropout)))
|
| 180 |
+
]))
|
| 181 |
+
for _ in range(b_depth):
|
| 182 |
+
self.k_layers.append(nn.ModuleList([
|
| 183 |
+
Residual(PreNorm(b_dim, Attention(dim=b_dim, heads=b_heads, dim_head=b_dim_head, dropout = dropout))),
|
| 184 |
+
Residual(PreNorm(b_dim, FeedForward(b_dim, b_mlp_head, dropout = dropout)))
|
| 185 |
+
]))
|
| 186 |
+
|
| 187 |
+
def forward(self, x, mask = None):
|
| 188 |
+
for attn, ff in self.layers:
|
| 189 |
+
x = attn(x, mask = mask)
|
| 190 |
+
x = ff(x)
|
| 191 |
+
out_feature = x
|
| 192 |
+
x = rearrange(x, 'b n d -> b d n')
|
| 193 |
+
x = self.channels_to_embedding(x)
|
| 194 |
+
b, d, n = x.shape
|
| 195 |
+
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
|
| 196 |
+
x = torch.cat((cls_tokens, x), dim = 1)
|
| 197 |
+
for attn, ff in self.k_layers:
|
| 198 |
+
x = attn(x, mask = mask)
|
| 199 |
+
x = ff(x)
|
| 200 |
+
return x, out_feature
|
| 201 |
+
|
| 202 |
+
class ViT(nn.Module):
|
| 203 |
+
def __init__(self, image_size, near_band, num_patches, num_classes, dim, depth, heads, mlp_dim, pool='cls', channel_dim=1, dim_head = 16, dropout=0., emb_dropout=0., mode='ViT'):
|
| 204 |
+
super().__init__()
|
| 205 |
+
|
| 206 |
+
patch_dim = image_size ** 2 * near_band
|
| 207 |
+
|
| 208 |
+
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
|
| 209 |
+
self.patch_to_embedding = nn.Linear(channel_dim, dim)
|
| 210 |
+
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
|
| 211 |
+
|
| 212 |
+
self.dropout = nn.Dropout(emb_dropout)
|
| 213 |
+
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout, num_patches, mode)
|
| 214 |
+
|
| 215 |
+
self.pool = pool
|
| 216 |
+
self.to_latent = nn.Identity()
|
| 217 |
+
|
| 218 |
+
self.mlp_head = nn.Sequential(
|
| 219 |
+
nn.LayerNorm(dim),
|
| 220 |
+
nn.Linear(dim, num_classes)
|
| 221 |
+
)
|
| 222 |
+
def forward(self, x, mask = None):
|
| 223 |
+
# patchs[batch, patch_num, patch_size*patch_size*c] [batch,200,145*145]
|
| 224 |
+
# x = rearrange(x, 'b c h w -> b c (h w)')
|
| 225 |
+
## embedding every patch vector to embedding size: [batch, patch_num, embedding_size]
|
| 226 |
+
|
| 227 |
+
x = self.patch_to_embedding(x) #[b,n,dim]
|
| 228 |
+
b, n, _ = x.shape
|
| 229 |
+
|
| 230 |
+
# add position embedding
|
| 231 |
+
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) #[b,1,dim]
|
| 232 |
+
x = torch.cat((cls_tokens, x), dim = 1) #[b,n+1,dim]
|
| 233 |
+
x += self.pos_embedding[:, :(n + 1)]
|
| 234 |
+
x = self.dropout(x)
|
| 235 |
+
# transformer: x[b,n + 1,dim] -> x[b,n + 1,dim]
|
| 236 |
+
x = self.transformer(x, mask)
|
| 237 |
+
# classification: using cls_token output
|
| 238 |
+
x = self.to_latent(x[:,0])
|
| 239 |
+
|
| 240 |
+
# MLP classification layer
|
| 241 |
+
return self.mlp_head(x)
|
| 242 |
+
|
| 243 |
+
class SSFormer_v4(nn.Module):
|
| 244 |
+
def __init__(self, dim, depth, heads, dim_head, mlp_head, b_dim, b_depth, b_heads, b_dim_head, b_mlp_head, num_patches, dropout, mode):
|
| 245 |
+
super().__init__()
|
| 246 |
+
|
| 247 |
+
self.layers = nn.ModuleList([])
|
| 248 |
+
self.k_layers = nn.ModuleList([])
|
| 249 |
+
self.channels_to_embedding = nn.Linear(num_patches, b_dim)
|
| 250 |
+
self.cls_token = nn.Parameter(torch.randn(1, 1, b_dim))
|
| 251 |
+
for _ in range(depth):
|
| 252 |
+
self.layers.append(nn.ModuleList([
|
| 253 |
+
Residual(PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))),
|
| 254 |
+
Residual(PreNorm(dim, FeedForward(dim, mlp_head, dropout = dropout)))
|
| 255 |
+
]))
|
| 256 |
+
for _ in range(b_depth):
|
| 257 |
+
self.k_layers.append(nn.ModuleList([
|
| 258 |
+
Residual(PreNorm(b_dim, Attention(dim=b_dim, heads=b_heads, dim_head=b_dim_head, dropout = dropout))),
|
| 259 |
+
Residual(PreNorm(b_dim, FeedForward(b_dim, b_mlp_head, dropout = dropout)))
|
| 260 |
+
]))
|
| 261 |
+
self.mode = mode
|
| 262 |
+
|
| 263 |
+
def forward(self, x, c, mask = None):
|
| 264 |
+
for attn, ff in self.layers:
|
| 265 |
+
x = attn(x, mask = mask)
|
| 266 |
+
x = ff(x)
|
| 267 |
+
x = rearrange(x, 'b n d -> b d n')
|
| 268 |
+
x = self.channels_to_embedding(x)
|
| 269 |
+
b, d, n = x.shape
|
| 270 |
+
cls_tokens = repeat(c, '() n d -> b n d', b = b)
|
| 271 |
+
x = torch.cat((cls_tokens, x), dim = 1)
|
| 272 |
+
for attn, ff in self.k_layers:
|
| 273 |
+
x = attn(x, mask = mask)
|
| 274 |
+
x = ff(x)
|
| 275 |
+
return x
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
einops
|
| 2 |
+
patchify
|
| 3 |
+
argparse
|
| 4 |
+
scipy
|
| 5 |
+
scikit-learn
|
| 6 |
+
torch
|
| 7 |
+
streamlit-aggrid
|
| 8 |
+
plotly
|
| 9 |
+
collection
|
sstvit.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn, einsum
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from einops import rearrange, repeat
|
| 5 |
+
from einops.layers.torch import Rearrange
|
| 6 |
+
from module import Attention, PreNorm, FeedForward, CrossAttention, SSTransformer
|
| 7 |
+
import numpy as np
|
| 8 |
+
|
| 9 |
+
class SSTTransformerEncoder(nn.Module):
|
| 10 |
+
|
| 11 |
+
def __init__(self, dim, depth, heads, dim_head, mlp_dim, b_dim, b_depth, b_heads, b_dim_head, b_mlp_head, num_patches, cross_attn_depth=3, cross_attn_heads=8, dropout = 0):
|
| 12 |
+
super().__init__()
|
| 13 |
+
|
| 14 |
+
self.transformer = SSTransformer(dim, depth, heads, dim_head, mlp_dim, b_dim, b_depth, b_heads, b_dim_head, b_mlp_head, num_patches, dropout)
|
| 15 |
+
|
| 16 |
+
self.cross_attn_layers = nn.ModuleList([])
|
| 17 |
+
for _ in range(cross_attn_depth):
|
| 18 |
+
self.cross_attn_layers.append(PreNorm(b_dim, CrossAttention(b_dim, heads = cross_attn_heads, dim_head=dim_head, dropout=0)))
|
| 19 |
+
|
| 20 |
+
def forward(self, x1, x2):
|
| 21 |
+
x1 = self.transformer(x1)
|
| 22 |
+
x2 = self.transformer(x2)
|
| 23 |
+
|
| 24 |
+
for cross_attn in self.cross_attn_layers:
|
| 25 |
+
x1_class = x1[:, 0]
|
| 26 |
+
x1 = x1[:, 1:]
|
| 27 |
+
x2_class = x2[:, 0]
|
| 28 |
+
x2 = x2[:, 1:]
|
| 29 |
+
|
| 30 |
+
# Cross Attn
|
| 31 |
+
cat1_q = x1_class.unsqueeze(1)
|
| 32 |
+
cat1_qkv = torch.cat((cat1_q, x2), dim=1)
|
| 33 |
+
cat1_out = cat1_q+cross_attn(cat1_qkv)
|
| 34 |
+
x1 = torch.cat((cat1_out, x1), dim=1)
|
| 35 |
+
cat2_q = x2_class.unsqueeze(1)
|
| 36 |
+
cat2_qkv = torch.cat((cat2_q, x1), dim=1)
|
| 37 |
+
cat2_out = cat2_q+cross_attn(cat2_qkv)
|
| 38 |
+
x2 = torch.cat((cat2_out, x2), dim=1)
|
| 39 |
+
|
| 40 |
+
return cat1_out, cat2_out
|
| 41 |
+
|
| 42 |
+
class SSTViT(nn.Module):
|
| 43 |
+
def __init__(self, image_size, near_band, num_patches, num_classes, dim, depth, heads, mlp_dim, b_dim, b_depth, b_heads, b_dim_head, b_mlp_head, pool='cls', channels=1, dim_head = 16, dropout=0., emb_dropout=0., multi_scale_enc_depth=1):
|
| 44 |
+
super().__init__()
|
| 45 |
+
|
| 46 |
+
patch_dim = image_size ** 2 * near_band
|
| 47 |
+
self.num_patches = num_patches+1
|
| 48 |
+
self.pos_embedding = nn.Parameter(torch.randn(1, self.num_patches, dim))
|
| 49 |
+
self.patch_to_embedding = nn.Linear(patch_dim, dim)
|
| 50 |
+
self.cls_token_t1 = nn.Parameter(torch.randn(1, 1, dim))
|
| 51 |
+
self.cls_token_t2 = nn.Parameter(torch.randn(1, 1, dim))
|
| 52 |
+
|
| 53 |
+
self.dropout = nn.Dropout(emb_dropout)
|
| 54 |
+
|
| 55 |
+
self.multi_scale_transformers = nn.ModuleList([])
|
| 56 |
+
for _ in range(multi_scale_enc_depth):
|
| 57 |
+
self.multi_scale_transformers.append(SSTTransformerEncoder(dim, depth, heads, dim_head, mlp_dim,b_dim, b_depth, b_heads, b_dim_head, b_mlp_head, self.num_patches,
|
| 58 |
+
dropout = 0.))
|
| 59 |
+
|
| 60 |
+
self.pool = pool
|
| 61 |
+
self.to_latent = nn.Identity()
|
| 62 |
+
|
| 63 |
+
self.mlp_head = nn.Sequential(
|
| 64 |
+
nn.LayerNorm(b_dim),
|
| 65 |
+
nn.Linear(b_dim, num_classes)
|
| 66 |
+
)
|
| 67 |
+
def forward(self, x1, x2):
|
| 68 |
+
# patchs[batch, patch_num, patch_size*patch_size*c] [batch,200,145*145]
|
| 69 |
+
# x = rearrange(x, 'b c h w -> b c (h w)')
|
| 70 |
+
## embedding every patch vector to embedding size: [batch, patch_num, embedding_size]
|
| 71 |
+
x1 = self.patch_to_embedding(x1) #[b,n,dim]
|
| 72 |
+
x2 = self.patch_to_embedding(x2)
|
| 73 |
+
b, n, _ = x1.shape
|
| 74 |
+
# add position embedding
|
| 75 |
+
cls_tokens_t1 = repeat(self.cls_token_t1, '() n d -> b n d', b = b) #[b,1,dim]
|
| 76 |
+
cls_tokens_t2 = repeat(self.cls_token_t2, '() n d -> b n d', b = b)
|
| 77 |
+
|
| 78 |
+
x1 = torch.cat((cls_tokens_t1, x1), dim = 1) #[b,n+1,dim]
|
| 79 |
+
x1 += self.pos_embedding[:, :(n + 1)]
|
| 80 |
+
x1 = self.dropout(x1)
|
| 81 |
+
x2 = torch.cat((cls_tokens_t2, x2), dim = 1) #[b,n+1,dim]
|
| 82 |
+
x2 += self.pos_embedding[:, :(n + 1)]
|
| 83 |
+
x2 = self.dropout(x2)
|
| 84 |
+
# transformer: x[b,n + 1,dim] -> x[b,n + 1,dim]
|
| 85 |
+
for multi_scale_transformer in self.multi_scale_transformers:
|
| 86 |
+
out1, out2 = multi_scale_transformer(x1, x2)
|
| 87 |
+
# classification: using cls_token output
|
| 88 |
+
out1 = self.to_latent(out1[:,0])
|
| 89 |
+
out2 = self.to_latent(out2[:,0])
|
| 90 |
+
out = out1+out2
|
| 91 |
+
# MLP classification layer
|
| 92 |
+
return self.mlp_head(out)
|
| 93 |
+
|
| 94 |
+
|