Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,47 @@
|
|
1 |
import os
|
2 |
import random
|
3 |
import uuid
|
4 |
-
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
from PIL import Image
|
8 |
import spaces
|
9 |
import torch
|
10 |
-
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
|
|
|
|
|
|
14 |
|
15 |
MODEL_ID = os.getenv("MODEL_REPO")
|
16 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
@@ -18,7 +49,7 @@ USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
|
18 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
19 |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # Allow generating multiple images at once
|
20 |
|
21 |
-
#
|
22 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
23 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
24 |
MODEL_ID,
|
@@ -37,17 +68,6 @@ if ENABLE_CPU_OFFLOAD:
|
|
37 |
pipe.enable_model_cpu_offload()
|
38 |
|
39 |
MAX_SEED = np.iinfo(np.int32).max
|
40 |
-
CACHE_EXAMPLES = False
|
41 |
-
|
42 |
-
DESCRIPTION = """# Stable Diffusion XL"""
|
43 |
-
if not torch.cuda.is_available():
|
44 |
-
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
|
45 |
-
|
46 |
-
def load_pipeline(pipeline_type):
|
47 |
-
if pipeline_type == "text2img":
|
48 |
-
return pipe
|
49 |
-
elif pipeline_type == "img2img":
|
50 |
-
return StableDiffusion3Img2ImgPipeline.from_pretrained(MODEL_ID, torch_dtype=torch.float16)
|
51 |
|
52 |
def save_image(img):
|
53 |
unique_name = str(uuid.uuid4()) + ".png"
|
@@ -59,309 +79,157 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
59 |
seed = random.randint(0, MAX_SEED)
|
60 |
return seed
|
61 |
|
62 |
-
@spaces.GPU
|
63 |
def generate(
|
64 |
prompt: str,
|
65 |
negative_prompt: str = "",
|
66 |
use_negative_prompt: bool = False,
|
67 |
-
seed: int =
|
68 |
width: int = 1024,
|
69 |
height: int = 1024,
|
70 |
-
guidance_scale: float =
|
|
|
71 |
randomize_seed: bool = False,
|
72 |
-
|
73 |
-
|
74 |
-
use_resolution_binning: bool = True,
|
75 |
progress=gr.Progress(track_tqdm=True),
|
76 |
):
|
77 |
-
pipe = load_pipeline("text2img")
|
78 |
-
pipe.to(device)
|
79 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
80 |
-
generator = torch.Generator().manual_seed(seed)
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
):
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
negative_prompt = None # type: ignore
|
121 |
-
|
122 |
-
init_image = init_image.resize((768, 768))
|
123 |
-
|
124 |
-
output = pipe(
|
125 |
-
prompt=prompt,
|
126 |
-
image=init_image,
|
127 |
-
negative_prompt=negative_prompt,
|
128 |
-
guidance_scale=guidance_scale,
|
129 |
-
num_inference_steps=num_inference_steps,
|
130 |
-
generator=generator,
|
131 |
-
strength=strength,
|
132 |
-
num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
|
133 |
-
output_type="battery",
|
134 |
-
).images
|
135 |
-
|
136 |
-
return output
|
137 |
-
|
138 |
-
examples = [
|
139 |
-
"A cardboard with text 'New York' which is large and sits on a theater stage.",
|
140 |
-
"A red sofa on top of a white building.",
|
141 |
-
"A painting of an astronaut riding a pig wearing a tutu holding a pink umbrella.",
|
142 |
-
"Studio photograph closeup of a chameleon over a black background.",
|
143 |
-
"Closeup portrait photo of beautiful goth woman, makeup.",
|
144 |
-
"A living room, bright modern Scandinavian style house, large windows.",
|
145 |
-
"Portrait photograph of an anthropomorphic tortoise seated on a New York City subway train.",
|
146 |
-
"Batman, cute modern Disney style, Pixar 3d portrait, ultra detailed, gorgeous, 3d zbrush, trending on dribbble, 8k render.",
|
147 |
-
"Cinnamon bun on the plate, watercolor painting, detailed, brush strokes, light palette, light, cozy.",
|
148 |
-
"A lion, colorful, low-poly, cyan and orange eyes, poly-hd, 3d, low-poly game art, polygon mesh, jagged, blocky, wireframe edges, centered composition.",
|
149 |
-
"Long exposure photo of Tokyo street, blurred motion, streaks of light, surreal, dreamy, ghosting effect, highly detailed.",
|
150 |
-
"A glamorous digital magazine photoshoot, a fashionable model wearing avant-garde clothing, set in a futuristic cyberpunk roof-top environment, with a neon-lit city background, intricate high fashion details, backlit by vibrant city glow, Vogue fashion photography.",
|
151 |
-
"Masterpiece, best quality, girl, collarbone, wavy hair, looking at viewer, blurry foreground, upper body, necklace, contemporary, plain pants, intricate, print, pattern, ponytail, freckles, red hair, dappled sunlight, smile, happy."
|
152 |
-
]
|
153 |
-
|
154 |
-
css = '''
|
155 |
-
.gradio-container{max-width: 1000px !important}
|
156 |
-
h1{text-align:center}
|
157 |
-
'''
|
158 |
-
with gr.Blocks(css=css, theme="snehilsanyal/scikit-learn") as demo:
|
159 |
-
with gr.Row():
|
160 |
-
with gr.Column():
|
161 |
-
gr.HTML(
|
162 |
-
"""
|
163 |
-
<h1 style='text-align: center'>
|
164 |
-
Stable Diffusion XL
|
165 |
-
</h1>
|
166 |
-
"""
|
167 |
)
|
168 |
-
gr.
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
)
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
with gr.Row():
|
189 |
-
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
190 |
-
negative_prompt = gr.Text(
|
191 |
-
label="Negative prompt",
|
192 |
-
max_lines=1,
|
193 |
-
value="deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
|
194 |
-
visible=True,
|
195 |
-
)
|
196 |
-
seed = gr.Slider(
|
197 |
-
label="Seed",
|
198 |
-
minimum=0,
|
199 |
-
maximum=MAX_SEED,
|
200 |
-
step=1,
|
201 |
-
value=0,
|
202 |
-
)
|
203 |
-
|
204 |
-
steps = gr.Slider(
|
205 |
-
label="Steps",
|
206 |
-
minimum=0,
|
207 |
-
maximum=60,
|
208 |
-
step=1,
|
209 |
-
value=25,
|
210 |
-
)
|
211 |
-
number_image = gr.Slider(
|
212 |
-
label="Number of Images",
|
213 |
-
minimum=1,
|
214 |
-
maximum=4,
|
215 |
-
step=1,
|
216 |
-
value=2,
|
217 |
-
)
|
218 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
219 |
-
with gr.Row(visible=True):
|
220 |
-
width = gr.Slider(
|
221 |
-
label="Width",
|
222 |
-
minimum=256,
|
223 |
-
maximum=MAX_IMAGE_SIZE,
|
224 |
-
step=32,
|
225 |
-
value=1024,
|
226 |
-
)
|
227 |
-
height = gr.Slider(
|
228 |
-
label="Height",
|
229 |
-
minimum=256,
|
230 |
-
maximum=MAX_IMAGE_SIZE,
|
231 |
-
step=32,
|
232 |
-
value=1024,
|
233 |
-
)
|
234 |
-
with gr.Row():
|
235 |
-
guidance_scale = gr.Slider(
|
236 |
-
label="Guidance Scale",
|
237 |
-
minimum=0.1,
|
238 |
-
maximum=10,
|
239 |
-
step=0.1,
|
240 |
-
value=7.0,
|
241 |
-
)
|
242 |
-
|
243 |
-
gr.Examples(
|
244 |
-
examples=examples,
|
245 |
-
inputs=prompt,
|
246 |
-
outputs=[result],
|
247 |
-
fn=generate,
|
248 |
-
cache_examples=CACHE_EXAMPLES,
|
249 |
)
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
)
|
257 |
-
|
258 |
-
gr.
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
fn=generate,
|
265 |
-
inputs=[
|
266 |
-
prompt,
|
267 |
-
negative_prompt,
|
268 |
-
use_negative_prompt,
|
269 |
-
seed,
|
270 |
-
width,
|
271 |
-
height,
|
272 |
-
guidance_scale,
|
273 |
-
randomize_seed,
|
274 |
-
steps,
|
275 |
-
number_image,
|
276 |
-
],
|
277 |
-
outputs=[result],
|
278 |
-
api_name="run",
|
279 |
)
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
show_label=False,
|
287 |
-
max_lines=1,
|
288 |
-
placeholder="Enter your prompt",
|
289 |
-
container=False,
|
290 |
-
)
|
291 |
-
init_image = gr.Image(label="Input Image", type="pil")
|
292 |
-
with gr.Row():
|
293 |
-
img2img_run_button = gr.Button("Generate", variant="primary")
|
294 |
-
with gr.Column(scale=1):
|
295 |
-
img2img_output = gr.Gallery(label="Result", elem_id="gallery")
|
296 |
-
with gr.Accordion("Advanced options", open=False):
|
297 |
-
with gr.Row():
|
298 |
-
img2img_use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
299 |
-
img2img_negative_prompt = gr.Text(
|
300 |
-
label="Negative prompt",
|
301 |
-
max_lines=1,
|
302 |
-
value="deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
|
303 |
-
visible=True,
|
304 |
-
)
|
305 |
-
img2img_seed = gr.Slider(
|
306 |
-
label="Seed",
|
307 |
-
minimum=0,
|
308 |
-
maximum=MAX_SEED,
|
309 |
-
step=1,
|
310 |
-
value=0,
|
311 |
-
)
|
312 |
-
img2img_steps = gr.Slider(
|
313 |
-
label="Steps",
|
314 |
-
minimum=0,
|
315 |
-
maximum=60,
|
316 |
-
step=1,
|
317 |
-
value=25,
|
318 |
-
)
|
319 |
-
img2img_number_image = gr.Slider(
|
320 |
-
label="Number of Images",
|
321 |
-
minimum=1,
|
322 |
-
maximum=4,
|
323 |
-
step=1,
|
324 |
-
value=2,
|
325 |
-
)
|
326 |
-
img2img_randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
327 |
-
with gr.Row():
|
328 |
-
img2img_guidance_scale = gr.Slider(
|
329 |
-
label="Guidance Scale",
|
330 |
-
minimum=0.1,
|
331 |
-
maximum=10,
|
332 |
-
step=0.1,
|
333 |
-
value=7.0,
|
334 |
-
)
|
335 |
-
strength = gr.Slider(label="Img2Img Strength", minimum=0.0, maximum=1.0, step=0.01, value=0.8)
|
336 |
-
|
337 |
-
img2img_use_negative_prompt.change(
|
338 |
-
fn=lambda x: gr.update(visible=x),
|
339 |
-
inputs=img2img_use_negative_prompt,
|
340 |
-
outputs=img2img_negative_prompt,
|
341 |
-
api_name=False,
|
342 |
)
|
343 |
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
if __name__ == "__main__":
|
367 |
-
demo.queue().launch(
|
|
|
1 |
import os
|
2 |
import random
|
3 |
import uuid
|
4 |
+
import json
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
from PIL import Image
|
8 |
import spaces
|
9 |
import torch
|
10 |
+
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
11 |
+
|
12 |
+
#Load the HTML content
|
13 |
+
#html_file_url = "https://prithivmlmods-hamster-static.static.hf.space/index.html"
|
14 |
+
#html_content = f'<iframe src="{html_file_url}" style="width:100%; height:180px; border:none;"></iframe>'
|
15 |
+
#html_file_url = "https://prithivmlmods-static-loading-theme.static.hf.space/index.html"
|
16 |
+
|
17 |
+
#html_file_url = "https://prithivhamster.vercel.app/"
|
18 |
+
#html_content = f'<iframe src="{html_file_url}" style="width:100%; height:400px; border:none"></iframe>'
|
19 |
+
|
20 |
+
DESCRIPTIONx = """## STABLE HAMSTER
|
21 |
+
"""
|
22 |
+
|
23 |
+
css = '''
|
24 |
+
.gradio-container{max-width: 560px !important}
|
25 |
+
h1{text-align:center}
|
26 |
+
footer {
|
27 |
+
visibility: hidden
|
28 |
+
}
|
29 |
+
'''
|
30 |
+
|
31 |
+
examples = [
|
32 |
+
"3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1.5), (best quality:1.5)",
|
33 |
+
"Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K",
|
34 |
+
"A young woman smiles in front of colorful walls, in the style of canon eos 5d mark iv, sigma 35mm f/1.4 dg hsm art, ilford xp2, rainbowcore, leather/hide, street-inspired, orderly symmetry --ar 3:2 --v 5",
|
35 |
+
"Curvy model posing in swimsuit, smiley face, sea at sunset --ar 3:2 --s 750 --v 5",
|
36 |
+
"A classic cheeseburger with tomato and fries and soda on a yellow checkered table cloth, in the style of playing with light and shadow, tabletop photography, bold colors and patterns, pigeoncore, vibrant street scenes, organic geometries, magenta and brown --ar 3:2 --v 5"
|
37 |
+
|
38 |
+
|
39 |
+
]
|
40 |
|
41 |
+
#Set an os.Getenv variable
|
42 |
+
#set VAR_NAME=”VALUE”
|
43 |
+
#Fetch an environment variable
|
44 |
+
#echo %VAR_NAME%
|
45 |
|
46 |
MODEL_ID = os.getenv("MODEL_REPO")
|
47 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
|
|
49 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
50 |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # Allow generating multiple images at once
|
51 |
|
52 |
+
#Load model outside of function
|
53 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
54 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
55 |
MODEL_ID,
|
|
|
68 |
pipe.enable_model_cpu_offload()
|
69 |
|
70 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
def save_image(img):
|
73 |
unique_name = str(uuid.uuid4()) + ".png"
|
|
|
79 |
seed = random.randint(0, MAX_SEED)
|
80 |
return seed
|
81 |
|
82 |
+
@spaces.GPU(duration=60, enable_queue=True)
|
83 |
def generate(
|
84 |
prompt: str,
|
85 |
negative_prompt: str = "",
|
86 |
use_negative_prompt: bool = False,
|
87 |
+
seed: int = 1,
|
88 |
width: int = 1024,
|
89 |
height: int = 1024,
|
90 |
+
guidance_scale: float = 3,
|
91 |
+
num_inference_steps: int = 25,
|
92 |
randomize_seed: bool = False,
|
93 |
+
use_resolution_binning: bool = True,
|
94 |
+
num_images: int = 1, # Number of images to generate
|
|
|
95 |
progress=gr.Progress(track_tqdm=True),
|
96 |
):
|
|
|
|
|
97 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
98 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
99 |
+
|
100 |
+
#Options
|
101 |
+
options = {
|
102 |
+
"prompt": [prompt] * num_images,
|
103 |
+
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
104 |
+
"width": width,
|
105 |
+
"height": height,
|
106 |
+
"guidance_scale": guidance_scale,
|
107 |
+
"num_inference_steps": num_inference_steps,
|
108 |
+
"generator": generator,
|
109 |
+
"output_type": "pil",
|
110 |
+
}
|
111 |
+
|
112 |
+
#VRAM usage Lesser
|
113 |
+
if use_resolution_binning:
|
114 |
+
options["use_resolution_binning"] = True
|
115 |
+
|
116 |
+
#Images potential batches
|
117 |
+
images = []
|
118 |
+
for i in range(0, num_images, BATCH_SIZE):
|
119 |
+
batch_options = options.copy()
|
120 |
+
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
121 |
+
if "negative_prompt" in batch_options:
|
122 |
+
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
123 |
+
images.extend(pipe(**batch_options).images)
|
124 |
+
|
125 |
+
image_paths = [save_image(img) for img in images]
|
126 |
+
return image_paths, seed
|
127 |
+
#Main gr.Block
|
128 |
+
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
129 |
+
gr.Markdown(DESCRIPTIONx)
|
130 |
+
with gr.Group():
|
131 |
+
with gr.Row():
|
132 |
+
prompt = gr.Text(
|
133 |
+
label="Prompt",
|
134 |
+
show_label=False,
|
135 |
+
max_lines=1,
|
136 |
+
placeholder="Enter your prompt",
|
137 |
+
container=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
)
|
139 |
+
run_button = gr.Button("Run", scale=0)
|
140 |
+
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
141 |
+
with gr.Accordion("Advanced options", open=False, visible=False):
|
142 |
+
num_images = gr.Slider(
|
143 |
+
label="Number of Images",
|
144 |
+
minimum=1,
|
145 |
+
maximum=4,
|
146 |
+
step=1,
|
147 |
+
value=1,
|
148 |
+
)
|
149 |
+
with gr.Row():
|
150 |
+
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
151 |
+
negative_prompt = gr.Text(
|
152 |
+
label="Negative prompt",
|
153 |
+
max_lines=5,
|
154 |
+
lines=4,
|
155 |
+
placeholder="Enter a negative prompt",
|
156 |
+
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
157 |
+
visible=True,
|
158 |
)
|
159 |
+
seed = gr.Slider(
|
160 |
+
label="Seed",
|
161 |
+
minimum=0,
|
162 |
+
maximum=MAX_SEED,
|
163 |
+
step=1,
|
164 |
+
value=0,
|
165 |
+
)
|
166 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
167 |
+
with gr.Row(visible=True):
|
168 |
+
width = gr.Slider(
|
169 |
+
label="Width",
|
170 |
+
minimum=512,
|
171 |
+
maximum=MAX_IMAGE_SIZE,
|
172 |
+
step=64,
|
173 |
+
value=1024,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
)
|
175 |
+
height = gr.Slider(
|
176 |
+
label="Height",
|
177 |
+
minimum=512,
|
178 |
+
maximum=MAX_IMAGE_SIZE,
|
179 |
+
step=64,
|
180 |
+
value=1024,
|
181 |
)
|
182 |
+
with gr.Row():
|
183 |
+
guidance_scale = gr.Slider(
|
184 |
+
label="Guidance Scale",
|
185 |
+
minimum=0.1,
|
186 |
+
maximum=6,
|
187 |
+
step=0.1,
|
188 |
+
value=3.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
)
|
190 |
+
num_inference_steps = gr.Slider(
|
191 |
+
label="Number of inference steps",
|
192 |
+
minimum=1,
|
193 |
+
maximum=25,
|
194 |
+
step=1,
|
195 |
+
value=23,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
)
|
197 |
|
198 |
+
gr.Examples(
|
199 |
+
examples=examples,
|
200 |
+
inputs=prompt,
|
201 |
+
cache_examples=False
|
202 |
+
)
|
203 |
+
|
204 |
+
use_negative_prompt.change(
|
205 |
+
fn=lambda x: gr.update(visible=x),
|
206 |
+
inputs=use_negative_prompt,
|
207 |
+
outputs=negative_prompt,
|
208 |
+
api_name=False,
|
209 |
+
)
|
210 |
+
|
211 |
+
gr.on(
|
212 |
+
triggers=[
|
213 |
+
prompt.submit,
|
214 |
+
negative_prompt.submit,
|
215 |
+
run_button.click,
|
216 |
+
],
|
217 |
+
fn=generate,
|
218 |
+
inputs=[
|
219 |
+
prompt,
|
220 |
+
negative_prompt,
|
221 |
+
use_negative_prompt,
|
222 |
+
seed,
|
223 |
+
width,
|
224 |
+
height,
|
225 |
+
guidance_scale,
|
226 |
+
num_inference_steps,
|
227 |
+
randomize_seed,
|
228 |
+
num_images
|
229 |
+
],
|
230 |
+
outputs=[result, seed],
|
231 |
+
api_name="run",
|
232 |
+
)
|
233 |
+
# gr.HTML(html_content)
|
234 |
if __name__ == "__main__":
|
235 |
+
demo.queue(max_size=40).launch()
|